

Time: 3 hrs

PART – A

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

B. Tech (Fourth Semester - Regular) Examinations, April – 2025

23BECPC24003 – Electronic Devices

(Electronics and Communication Engineering)

Maximum: 60 Marks

AR 22

Answer All Questions
(The figures in the right-hand margin indicate marks)

 $(2 \times 5 = 10 \text{ Marks})$

Answer ALL questions	CO #	Blooms Level
What is Boltzmann's Approximation?	CO1	K2
Why the width of the Base of a BJT is made smaller than the minority carrier diffusion	CO3	K2
length?		
Define 'Flat-Band voltage' for a MOS capacitor.	CO4	K1
In a bipolar transistor biased in the forward active region the base current is $6 \ \mu A$ and	CO2	K2
collector current is 500 μ A. Determine α .		
Write the Shockley's boundary condition for a forward bias PN Junction	CO5	K1
	Why the width of the Base of a BJT is made smaller than the minority carrier diffusion length? Define 'Flat-Band voltage' for a MOS capacitor. In a bipolar transistor biased in the forward active region the base current is $6 \ \mu A$ and collector current is 500 μA . Determine α .	What is Boltzmann's Approximation?CO1Why the width of the Base of a BJT is made smaller than the minority carrier diffusionCO3length?Define 'Flat-Band voltage' for a MOS capacitor.CO4In a bipolar transistor biased in the forward active region the base current is 6 μA andCO2collector current is 500 μA. Determine α.CO4

PART – B

(10 x 5 = 50 Marks)

Answer ALL the questions	Marks	CO #	Blooms Level
2. a. Derive the expression for the thermal equilibrium concentration of electrons in the conduction band using effective density of states, Fermi energy and other terms.	6	CO1	K3
b. Calculate the thermal equilibrium electron concentration in Si at $T = 400$ K. The Fermi energy is 0.34 eV above the valence band energy. (OR)	4	CO1	K4
 c. The electron concentration in silicon at T=300K is n₀=5x10⁵cm⁻³ i. Determine p₀. Is this n-type or P-Type material ii. Determine the position of Fermi energy with respect to intrinsic Fermi energy level 	4	CO1	K4
d. Derive the expression for variation of Fermi Energy with respect to doping concentration and temperature along with the plot.	6	CO1	K3
3.a. Derive Total current density in a semiconductor including the expression of diffusion and drift current density.	10	CO2	K3
	10	001	W2
 b. Derive the expression for Potential Across the junction of a PN Junction in Zero bias. Also derive the expression of V_{bi} in terms of x_n and x_p. 	10	CO2	K3
4.a. Derive an expression for capacitance of a reverse biased PN junction?	6	CO3	K3
b. Write down the difference between Schottky diode and PN Junction (OR)	4	CO3	K1
c. Explain punch through breakdown in a transistor with the help of suitable diagram.	6	CO3	K2
d. What is Eber's Moll Model? Derive the expression for $I_c \& I_B$.	4	CO3	K3

5.a.	Explain CMOS Fabrication Technology with suitable diagram of a CMOS	10	CO4	K1
	Inverter.			
	(OR)			
b.	Explain MOS C-V Characteristics of a N-Mos with suitable diagram.	10	CO4	K2
6.a.	Explain Base-width Modulation in a transistor with the help of suitable diagram.	5	CO5	K2
b.	Derive the expression of space charge width of a P-N Junction.	5	CO5	K3
	(OR)			
с.	Write a short note on HEMT.	5	CO5	K1
d.	Calculate Cox, C'min and C'FB of a MOS capacitor with a p type silicon substrate	5	CO5	K4
	at T=300K Doped with Na = 10^{16} cm ⁻³ . The oxide is sio ₂ with a thickness of			
	550A° and the gate is Aluminium.			

--- End of Paper ---