Reg. No



## GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

B. Tech (Fourth Semester - Regular) Examinations, April - 2025

23BBTPC24003 – Upstream Process Engineering

(Biotechnology)

Time: 3 hrs

Maximum: 60 Marks

| (The figures in the right hand margin indicate marks) |                                                                                                            |             |                 |  |  |  |  |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------|-----------------|--|--|--|--|
| PART - A  (2 x 5 =                                    |                                                                                                            | = 10 Marks) |                 |  |  |  |  |
| Q.1.                                                  | Answer ALL questions                                                                                       | CO #        | Blooms<br>Level |  |  |  |  |
| a.                                                    | Define the term Sphericity and derive its mathematical expression                                          | CO2         | K1              |  |  |  |  |
| b.                                                    | Explain the concept of Critical Speed in the context of particle motion in rotating                        | CO2         | K1              |  |  |  |  |
|                                                       | equipment.                                                                                                 |             |                 |  |  |  |  |
| c.                                                    | State and explain Newton's Law of Viscosity with its mathematical form                                     | CO1         | K2              |  |  |  |  |
| d.                                                    | Interpret the term Critical Thickness of Insulation and discuss its significance in heat transfer          | CO2         | K1              |  |  |  |  |
| e.                                                    | Define Relative Volatility and explain its importance in the separation of liquid mixtures by distillation | CO2         | K3              |  |  |  |  |
|                                                       | by distillation                                                                                            |             |                 |  |  |  |  |

**Answer ALL questions** 

## PART – B

## (10 x 5=50 Marks)

| Answer ALL the questions |                                                                                                                                                                                                                       | Marks    | CO # | Blooms<br>Level |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|-----------------|
| 2. a.                    | Define and explain the concept of size reduction. Analyze the main objectives<br>and underlying principles of size reduction, and evaluate how these principles<br>affect equipment selection and process efficiency. | 5        | CO1  | K1              |
| b.                       | Explain the working principle, construction, and operational features of a Ball<br>Mill as size reduction equipment. Discuss the factors affecting its efficiency and<br>performance in industrial applications.      | 5        | CO2  | K2              |
|                          | (OR)                                                                                                                                                                                                                  | <i>.</i> | ~~.  | 17.1            |
| c.                       | Derive the expression for the energy and power consumption in a size reduction machine, incorporating both mechanical efficiency and crushing efficiency.                                                             | 6        | CO1  | K1              |
| d.                       | Compare and contrast open-circuit and closed-circuit grinding systems in mineral processing. Discuss their operational principles, advantages, disadvantages, and typical applications.                               | 4        | CO2  | K2              |
| 3.a.                     | Derive Bernoulli's equation from Euler's equation of motion for an incompressible, steady, and inviscid fluid flow along a streamline.                                                                                | 6        | CO2  | K2              |
| b.                       |                                                                                                                                                                                                                       | 4        | CO2  | K1              |
| c.                       | Derive the continuity equation for fluid flow through a pipe, assuming steady, incompressible, and non-viscous flow.                                                                                                  | 5        | CO2  | K2              |

| d.   | Explain the construction, working principle, and applications of a Venturimeter.<br>Derive the equation to calculate the flow rate using the Venturimeter.                                                                                                                                                                                                                                 | 5 | CO3 | K3 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|----|
| 4.a. | Derive an expression for steady-state heat conduction in one dimension through<br>a composite wall.                                                                                                                                                                                                                                                                                        | 5 | CO3 | K2 |
| b.   | The temperature at the inner and outer surfaces of a boiler wall made of 20 mm thick steel and covered with an insulating material of 5 mm thickness are 300 $^{0}$ C and 50 $^{0}$ C respectively. If the thermal conductivities of steel and insulating material are 58W/m <sup>0</sup> C and 0.116 W/m <sup>0</sup> C respectively, determine the rate of flow through the boiler wall. | 5 | CO4 | K3 |
|      | (OR)                                                                                                                                                                                                                                                                                                                                                                                       |   |     |    |
| c.   | Derive the expression for heat transfer rate Q under combined conduction and convection                                                                                                                                                                                                                                                                                                    | 5 | CO3 | K1 |
| d.   | Water flows at the rate of 65 kg/min through a double pipe counter flow heat exchanger. Water is heated from 50 °C to75 °C by oil flowing through the tube. The specific heat of the oil is 1.780 KJ/kg.K. The oil enters at 115 °C and leaves at 70 °C.the overall heat transfer co-efficient is 340 W/m2K.calcualte the following                                                        | 5 | CO4 | K2 |
| 5.a. | What is diffusion and what factors affect the rate of diffusion? How does molecular diffusion differ from bulk or turbulent diffusion?                                                                                                                                                                                                                                                     | 5 | CO4 | K1 |
| b.   | Derive the Flux Equation in case of in case steady state diffusion of A through No diffusing B in case of Gas.                                                                                                                                                                                                                                                                             | 5 | CO3 | K2 |
|      | (OR)                                                                                                                                                                                                                                                                                                                                                                                       |   |     |    |
| c.   | Derive the Flux Equation in case of an Equimolecular counter diffusion in case of Liquid.                                                                                                                                                                                                                                                                                                  | 5 | CO4 | K1 |
| d.   | Derive the Flux Equation in case steady state diffusion of A through<br>Nondiffusiong B in case of Liquid.                                                                                                                                                                                                                                                                                 | 5 | CO4 | K3 |
| 6.a. | Do the analysis among mass, heat and momentum transfer? From this mention the Reynolds analogy and Chilton colburn analogy.                                                                                                                                                                                                                                                                | 5 | CO1 | K1 |
| b.   | Using a component balance, derive the operating line equation for the stripping section of a distillation column.                                                                                                                                                                                                                                                                          | 5 | CO2 | K2 |
|      | (OR)                                                                                                                                                                                                                                                                                                                                                                                       |   |     |    |
| c.   | Using a component balance, derive the operating line equation for the enriching section of a distillation column.                                                                                                                                                                                                                                                                          | 5 | CO1 | K1 |
| d.   | Derive the Rayleigh's equation in terms of relative volatility in case of differential distillation.                                                                                                                                                                                                                                                                                       | 5 | CO2 | K2 |
|      | End of Paper                                                                                                                                                                                                                                                                                                                                                                               |   |     |    |