Reg. No GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY) B. Tech(Fourth Semester - Regular) Examinations, April - 2025 23BCMP24011 – Introduction to Machine Learning

(CSE-AIML)

Time: 3 hrs		Maximum: 60 Marks			
		(The figures in the right hand margin indicate marks)			
	ART –		$(2 \times 5 =$		
Q.1.	. Answ	er ALL questions		CO #	Blooms Level
a.	-	in what is linearly, non-linearly and almost linearly separable with a suitable e	xample.	CO1	K1
b.	What	is residual errors? Give a suitable example.		CO2	K1
c.	Write	down the steps for calculating the ROC curve		CO3	K2
d.	Write	down the algorithm for Gradient descent with linear regression		CO4	K2
e.	In K-	NN, what is K, and what is the justification of K?		CO5	K2
$\mathbf{PART} - \mathbf{B} \tag{1}$					arks)
Answer ALL the questions			Marks	CO #	Blooms Level
2. a	a. Cor	nsider a dataset containing the following observations:			
	I.	Compute the slope and intercept of the linear regression line for the given	1		
		dataset.			
	II.	Use the equation of the regression line to predict		001	WO
		the value of Y when X is 6. $X \begin{vmatrix} 1 \\ 2 \end{vmatrix} \begin{vmatrix} 3 \\ 4 \end{vmatrix} \begin{vmatrix} 5 \\ 5 \end{vmatrix}$	5	CO1	K3
	III.	Calculate the coefficient of determination (R^2) for $Y = 3 = 4 = 5 = 6 = 8$	1		
		this regression model and interpret its meaning in	4		
		the context of the dataset			
ł	o. Dif	ferentiate between the training and testing phases in machine learning	,.		
	Dis	cuss how training-testing splits, cross-validation, and performance metrics help	p 5	CO1	K2
	ens	ure model robustness and generalization to unseen data.			
		(OR)			
(c. Dis	cuss the components of a machine learning system and explain how machine			
	lear	ning differs from traditional design-based approaches.	5	CO2	K2
	Inc	ude a diagrammatic representation of the end-to-end ML workflow.			
C	d. Ad	ataset with the following values:			
	X =	[1, 2, 3, 4, 5]			
	Y =	[2, 3, 4, 5, 6]			
	Per	form the following:			
		1. Fit a linear regression model to the data using the least squares method.	5	CO2	K3
		2. Find the slope and intercept of the regression line.			
		3. Predict the value of Y when $X = 6$.			
		4. Calculate the following performance metrics: Mean Squared Error (MSE)	,		
		Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE)			
3.8			:		
	0	$it(p) = -1 + 0.5 \cdot X_1 + 1.2 \cdot X_2$			
		this model to compute the predicted probability \mathbf{p} that $\mathbf{Y} = 1$ for an input where		_	
	$X_1 =$	$= 2 \text{ and } X_2 = 3$	5	CO2	K3
		1. Calculate the log-odds (logit).			
		2. Convert the logit into a probability.			
		3. Classify the output if threshold $= 0.5$.			

b.	Discuss the various types of regularization techniques in regression. Explain L1 (Lasso), L2 (Ridge), and Elastic Net regularization with appropriate mathematical formulations. (OR)	5	CO2	K2			
c.	Explain the working of Logistic Regression in classification problems. Discuss the sigmoid function, log-odds, probability estimation, decision boundary, and the loss function used in logistic regression.	5	CO2	K2			
d.	Write an algorithm to demonstrate the K-NN classifier to classify the test point $(X1=2, X2=2)$ with K=3 $\boxed{\begin{array}{c cccccccccccccccccccccccccccccccccc$	5	CO2	K3			
4.a.	Explain truncation and pruning in decision trees. Given a decision tree with 5 levels and 95% accuracy on training data but 70% on test data, should pruning be applied? Justify your answer.	5	CO3	K4			
b.	Explain the Decision Tree algorithm. How do ID3, C4.5, and CART differ from one another? Discuss how each algorithm chooses the splitting attribute, handles missing values, and deals with continuous attributes. (OR)	5	CO3	K2			
c.	Explain the concept and importance of cross-validation in machine learning. Discuss K-fold cross-validation. Explain how cross-validation helps in reducing overfitting	5	CO3	K2			
d.	and selecting hyper parameters. Write a short notes on Truncation and Pruning.			K1			
5.a.	What is the Silhouette Score? Explain how it is computed for each data point and its	5	CO4	K2			
1.	significance in cluster validation.	5	001	112			
b.	Describe the working of Principal Component Analysis (PCA). Explain how eigenvectors and eigenvalues are used in reducing dimensions.	5	CO4	K2			
c.	(OR) X1 2 0 3 4 5						
	X2 0 2 1 3 5						
	Consider the following 2D dataset and apply the PCA of the followings: -	_	<i></i>				
	 Calculate the covariance matrix. Find the aigenvalues and aigenvectors. 	5	CO4	K2			
	 Find the eigenvalues and eigenvectors. Reduce the data to 1 principal component (1D). 						
	 Reconstruct the data from the reduced form. 						
d.	Describe the structure and use of K-d Trees. How are they constructed and used for nearest neighbor searches in clustering and classification?	5	CO4	K2			
6.a.	Differentiate between Bagging and Boosting. Provide the workflow, advantages, and	5	CO5	K4			
b.	limitations of each technique as well as write the algorithms in each What is Random Forest? Describe its working with the help of Decision Trees and						
υ.	explain how it handles overfitting and feature importance. (OR)	5	CO5	K2			
c.	Explain the Gradient Boosting and AdaBoost algorithms. Highlight their differences in terms of model construction, error handling, and performance	5	CO5	K4			
d.	in terms of model construction, error handling, and performance. What is Stacking (Stacked Generalization)? Explain the concept of meta-learners with a use case example	5	CO5	K3			
with a use case example End of Paper							