GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, **ODISHA, GUNUPUR** (GIET UNIVERSITY)

B. Tech (Fourth Semester - Regular) Examinations, April - 2025 23BMEPC24004 - Quality Control and Reliability

(Mechanical Engg.)

Maximum: 60 Marks

Answer ALL questions				
(The figures in the right hand margin indicate marks)				

Q.1. Answer ALL questions			Blooms Level
a.	Differentiate between Quality Assurance and Quality Control.	CO1	K1
b.	The following data represents the diameter of 10 parts: 10.2, 10.5, 10.8, 11.1, 10.9, 11.2,	CO1	К2
	10.6, 11.0, 10.7, 10.4. Calculate the mean and range.	001	ΠZ
c.	Explain the meaning and significance of AQL and LTPD.	CO5	К2
d.	A component has a constant failure rate of 0.005 per hour. Calculate the probability that	CO6	КЗ
	the component will survive for 500 hours.	000	1/2

Briefly explain product life cycle with diagram. e.

Reg. No

PART – B

Answer ALL the questions

2. a. Define Statistical Quality Control (SQC). How does SQC contribute to product 5 CO1 consistency and customer satisfaction?

Subgroup

1

The XYZ Automobile Company b. produces engine shafts with а specified diameter of 50 mm. The quality control team collects 5 subgroup samples of 5 shafts each. Calculate the control limits for X bar chart and interpret the result.

(OR)	
(OIC)	

c. The PQR Electronics company produces resistors with a specified resistance of

- 1000 ohms. The quality control team collects 5 subgroup samples of 5 resistors each. Calculate the control limits for X bar chart and R chart to interpret the result.
- What are the various uses of control charts in a manufacturing environment? d. 5 Explain how control charts help in process monitoring. 3.a. Differentiate between single, double, and multiple sampling techniques with
- 5 CO2 suitable examples.

Subgroup

1

2

3

4

5

2	50.3, 49.7, 50.2, 50.1, 49.8	-	603
3	49.9, 50.0, 50.3, 50.2, 49.7	5	CO3
4	50.1, 50.2, 49.9, 50.0, 50.3		
5	50.2, 49.8, 50.1, 50.3, 49.9		

Measurements

980, 1020, 1000, 990, 1010

1010, 980, 1000, 1020, 990

990, 1010, 980, 1000, 1020

1000, 990, 1010, 980, 1020

1020, 1000, 990, 1010, 980

Measurements

49.8, 50.2, 50.1, 49.9, 50.0

$(2 \times 5 = 10 \text{ Marks})$

(10 x 5 = 50 Marks)

CO #

Blooms

Level

Κ1

К5

Κ5

Κ4

K2

CO6 К4

Marks

5

CO3

CO3

Time: 3 hrs

PART – A

b.	A process engineer records the following number of surface	Sample	Area (m ²)	Defects			
	defects per square meter of	1	5	1			
	material processed:	2	4	3	5	CO3	К5
	Construct the U-chart for result	3	6	2			
	interpretation.	4	5	1			
		5	5	6			
		(OR)					
c.	c. Draw and explain the Operating Characteristic (OC) curve for a single sampling				5	CO5	К5
	plan.				5	205	No
d.	A quality control team monitors		-				
	a product. The data collected over	-			5	CO3	К5
	Construct a C chart and determin	-					
4.a.	Compare the Kaizen approach		nprovement mo	dels. How do	5	CO4	К5
	Quality Circles support the Kaize	1 1 1			0		
b.	Describe the role of training a			-	5	CO4	К5
	including the necessary skills and	-	r quality professi	onals.	-		
		(OR)					
c.	Explain the philosophy and princ		does JIT contrib	oute to quality	5	CO4	К5
	improvement and waste reduction?				C		
d.	What are the key challenges a			Fotal Quality	5	CO4	К5
	Management, and how can organizations overcome them?				-		
5.a.	A system consists of 2 compone		-	-			
	reliability of 0.95 and the second	-	• •		5	CO5	К4
	sub-components with reliabilitie	es of 0.8 and 0.7.	Calculate the o	verall system			
	reliability.	1			_		
b.	Explain the concept of hazard rat	•	nce in reliability	engineering.	5	CO5	К4
		(OR)					
c.	A mechanical component has a	_					
	parameter $\eta = 1000$ hours. Deter	rmine the reliability	ty at 500 hours	and the mean	5	CO5	К4
	time to failure.						
d.	A system consists of 2 parallel bi		• •		_		
	Branch 1 has components with				5	CO5	К4
~	components with reliabilities of (-	-			
6.a.	Describe the role of preventi		and predictive	maintenance	5	CO6	К4
1.	techniques in reliability enhancer			11			
b.	Differentiate between unit redur	•		illustrate with	5	CO6	К2
	practical examples where each ty		ipplied.				
~	Evaluin the stages of the dest 1	(OR)	itabla dia ang m	d avanut-	-	CO5	17.4
с.	Explain the stages of product dev	-	-	-	5	CO5	К4
d.	Describe the various stages of the			considerations	5	CO5	К4
	of reliability and maintainability	influence each sta	ige ?				

--- End of Paper ---