Reg.

No

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY, ODISHA, GUNUPUR (GIET UNIVERSITY)

B. Tech (Fourth Semester - Regular) Examinations, April – 2025 23BELPC24002/23BEEPC24002 – Control Systems

(EE/EEE)

Time: 3 hrs

PART – A

Maximum: 60 Marks

Answer ALL questions (The figures in the right hand margin indicate marks)

$(2 \times 5 = 10 \text{ Marks})$

Q.1. Answer ALL questions		CO #	Blooms Level
a.	What do you mean by time constant of a system?	CO2	K1
b.	What is Signal Flow Graph (SFG) in control system? State Mason's Gain formula.	CO1	K1
c.	What are angle and magnitude conditions in root locus?	CO3	K1
d.	What do you mean by Breakaway point in root locus? How can they be determined?	CO3	K1
e.	Why negative feedback is preferred in control system?	CO1	K2

PART - B

Answer ALL the questions

2. a. Determine overall transfer function C/R using block diagram reduction technique.

$$R \xrightarrow{+} G_{1} \xrightarrow{+} G_{2} \xrightarrow{+} G_{3} \xrightarrow{+} C$$
5 CO1 K3

- b. The forward path gain of unity feedback control system is $G(S) = \frac{144}{s(S+12)}$. Determine the natural frequency, frequency of damped oscillations, maximum overshoot, peak time, rise time and settling time. 5 CO2 K2
 - (OR)
- c. Determine the overall transfer function T(s) of the system using Mason' Gain Formula.

- d. Explain the working principle of an open-loop and closed-loop control systems with suitable examples. Discuss the advantages and disadvantages of open-loop 5 CO1 K2 systems.
- 3.a. What are time domain specifications and define each of them.5CO2K1
- b. For unity feedback system having $G(s) = \frac{10(5+1)}{s^2 (s+2)(s+10)}$. Determine (i) Type of the system (ii) Steady state error for the input as $(1 + 4t + t^2/2)$ 5 CO2 K2

Page 1 of 2

AY 23

(10 x 5 = 50 Marks)

CO#

Blooms

Level

Marks

c.	The open loop transfer function of a servo system with unity feedback is			
	$G(s) = \frac{20}{S(0.1S+1)}$. Evaluate the static error constants and obtain steady-state error	5	CO2	K2
	of the system when subjected to $r(t) = 2 + 3t + 4t^2$			
d.	Given a second-order system with transfer function $G(s) = \frac{25}{S^2 + 6S + 25}$. Determine	5	CO2	K2
4.a.	the peak time, and settling time (2% criterion) of the system. The characteristic equation of a system is $s^4 + s^3 + s + 0.5 = 0$.	-		
	Using Routh's criterion determine (i) Number of roots in the left half of S-plane (ii) Number of roots in the right half of S-plane. Number of roots on the imaginary axis	5	CO3	К3
b.	The transfer function of a unity feedback control system is given by			
	$G(s) = \frac{K}{S(S+2)(S+4)}$. Draw the root locus plot and hence determine (i) The value of K such that the output response will become sustained oscillations. (ii) The value of K such that the system will be absolutely stable.	5	CO3	K4
c.	(OR) State and explain Routh's Stability Criterion. Derive the Routh array for a			
с.	general nth-order polynomial and explain the conditions for stability. Discuss how special cases such as a zero in the first column or an entire row of zeros are handled. Illustrate your answer with a suitable example.	5	CO3	K3
d.	Sketch the complete root locus plot of the following system having			
	$G(S)H(S) = \frac{K}{S(S+1)(S+3)}$. Investigate the stability.	5	CO3	K4
5.a.	Sketch the polar plot for the transfer function $G(S) = \frac{1}{S^2(S+10)}$	3	CO4	K2
b.	Construct the Bode plot on a semilog graph paper for a unity feedback system,			
	whose open loop transfer function is given by $G(s) = \frac{10}{S(1+S)(1+0.02S)}$. From the	7	CO4	K4
	Bode plot determine (i) Gain & Phase crossover frequency (ii) GM, PM and			
	stability of the closed loop system			
C	(OR) 5	_		
C.	Draw the polar plot for the system $G_2(s) = \frac{5}{S(S+2)(S+10))}$	3	CO4	K2
d.	A certain unity feedback control system is given by $G(s) = \frac{K}{S(1+S)(1+0.1S)}$. Draw			
	the Bode-Plot of the above system, Determine the value of K so as to have	7	CO4	K4
	(i) Gain Margin=15 db (ii) Phase Margin= 40°			
6.a.	Define Nyquist Stability Criterion.	2	CO4	K1
b.	Draw the Nyquist Plot for the system whose open loop transfer function is	8	CO4	K4
	$G(s)H(S) = \frac{20}{S(S+2)(S+10)}$. Investigate the stability.	0	04	174
	(OR)			
c.	Consider a type 0, 3^{rd} order system $G(s)H(s) = \frac{10}{(1+s)(1+0.4s)(1+0.1s))}$. Investigate	6	CO4	K4
	the stability using Nyquist stability criteria.	0	001	
d.	What do you mean by Gain Margin, Phase Margin, Gain crossover frequency	4	CO4	K1
	and Phase Crossover frequency of a system?			

--- End of Paper ---