Reg. No

AY 23

К2

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY, ODISHA, GUNUPUR (GIET UNIVERSITY)

B. Tech (Fourth Semester - Regular) Examinations, April - 2025

23BECPC24001 – Digital System Design

(ECE)

Time: 3 hrs Ma		Maximu	ximum: 60 Marks		
	Answer ALL questions				
	(The figures in the right-hand margin indicate marks)	<i>(</i>) -	10.35		
PART - A (2 x 5 = 10 Marks)					
Q.1. A	answer ALL questions		CO #	Blooms Level	
a. C	Convert 712.5 to binary, hexadecimal and Octal.		CO1	К2	
b. S	tate De Morgan's Theorems.		CO1	K1	
	Define "Prime Implicants" in a Karnaugh map? Under what condition a min-te roup is said to be essential?	rm in a	CO2	K1	
d. S	tate the difference between "latch" and "flip-flop".		CO3	К1	
e. I	Define Noise Margin and propagation Delay in output waveform of the logic gate.		CO5	K1	
PART - B (10 x 5 = 50 M					
Answer ALL the questions Marks		CO #	Blooms Level		
2. a.	Find the following additions: I. (+14, -9) using 1's complement notation.	5	CO1	КЗ	
b.	II. $(-16, +11)$ using 2's complement notation. Express the number (-3.75) as a floating-point number using IEEE single precision.	5	CO1	К2	
	(OR)				
c.	Establish the following identities of Boolean algebra				
	(i) $A + AB = A$	5	CO1	К2	
	(ii) $(A+B)(A+C) = A+BC$				
d.	Implement the following function using NOR gates only.	5	CO1	К2	
	F(A, B, C, D) = (A + C) (B + D).		001	N2	
3.a.	For the given function find the minimized form and implement using basic logic gates. $F = \sum m(1, 2, 5, 7, 9, 15) + d(4, 6, 12, 13)$	5	CO2	КЗ	
b.	$F = \Sigma m (1, 3, 5, 7, 9, 15) + d (4, 6, 12, 13)$ A magnitude comparator is a combinational circuit that compares two numbers, A and B, and determines their relative magnitudes. The outcome of the comparison is specified by three binary variables that indicate whether A>B, A=B or A < B. Determine the algorithm to implement this comparator and draw a 2- bit magnitude comparator using combinational circuit. (OR)	5	CO2	КЗ	
c.	What is an encoder? Design an Octal-to-Binary encoder.	5	CO2	КЗ	
d.	The four variable logic function can be expressed as F (A, B, C, D) = Σ m (1, 2, 5, 7, 9, 11, 14). Realize the above function using 8 x 1 MUX.	5	CO2	КЗ	
4.a.	Explain how a J-K flip-flop can be constructed using D flip-flop.	5	CO3	К6	
1					

b. An 8-bit shift register has the binary equivalent of the decimal number 98 stored 5 CO3 in it. Find the base-10 equivalent contents of the register after the following

operations have been performed? For each case, assume the same initial state given.

- (i) Shift Left 1
- (ii) Shift Right 1
- (iii) Rotate Right 2
- (iv) Rotate Left 2

(OR)

c.	State shift Registers types. Explain the principle of a 4-bit Serial-in Parallel-out shift register with required diagram.	5	CO3	K2
d.	Define race around conditions in JK flipflop and explain how it is avoided by using master slave Flip-flop with its circuit diagram.	5	CO3	K4
5.a.	Draw the diagram of the 4×4 RAM.	5	CO4	К2
b.	Design a Decade counter using D-flip flops.	5	CO3	КЗ
	(OR)			
c.	Design a Full Adder circuit using a ROM.	5	CO4	КЗ
d.	Design a synchronous counter for the following sequence using T flip-flops: 1, 3, 5, 6, 1,	5	CO3	K3
6.a.	Design the Boolean expression $F = (ABC+DE)$ ' using CMOS Logic.	5	CO5	КЗ
b.	Write a VHDL code for the 4-bit equality detector using Data Flow modelling (OR)	5	CO6	K6
c.	Write a short note on any one of the following: (a) CMOS Inverter (b) DTL NAND.	5	CO5	K2
d.	Write a VHDL code for the 2×1 MUX using Behavioral modelling. End of Paper	5	CO6	K6