GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

B. Tech (Fourth Semester - Regular) Examinations, April – 2025 23BCSPC24004/23BCMPC24004/23BCDPC24004– Operating System (CSE, CSE-AIML, CSE-DS)

				(CSE,	CSE-	AIML, C	SE-DS)				
Time:	: 3 hrs								Maxim	um: 60	Marks
		(The fig	ures in	the righ	t hand	margin in	dicate n				
PA	RT – A								$(2 \times 5 =$		
Q.1. A	Answer ALL	L questions								CO #	Blooms Level
a. S	State the diff	ference between a p	orogram	and a pro	ocess.					CO1	K1
b. I	Explain the t	erms "CPU Schedu	uler and	Job Sche	eduler".					CO1	K2
c. V	Write a shor	t note on Cascade	Fermina	tion and l	Inter-Pr	ocess Com	municatio	on.		CO2	K1
d. V	What is dem	and paging?								CO2	K1
e. I	Define the te	erms "Base register	and Lin	nit registe	er".					CO1	K1
PA	RT – B							(10 x 5 =	= 50 Ma	arks)
	er ALL the	questions							Marks	CO #	Blooms Level
2. a.	Briefly exp Sharing sy	plain the pros and constems.	ons of B	atch Proc	essing,	Multi-Prog	ramming	, and Time	5	CO1	K1
b.	What are operation.	the components o	f an op	erating s	system?	Explain th	neir role	in system	5	CO2	K2
			((OR)							
с.	What is a	distributed system	? What	are the ty	pes? W	rite down	the advar	ntages of a	5	CO1	K1
	distributed	system.							5	COI	K1
d.								n scheduler	5	CO2	K2
		term scheduler.	. ~			2					
3.a.	-	itable example, bi pid(), exec()	riefly ex	plain the	usage	of system	calls: for	k(), exit(),	5	CO3	K3
b.		t of processes arriv	ed in re	adv queu	ρ						
0.	Given a se	Process	P1	P2	с. РЗ	P4	P5	1			
		Arrival Time	0	1	2	3	4	-			
		Burst Time	10	1	2	1	5		5	CO4	K3
		Priority	3	1	4	5	2	-		001	
	Prepare a	Gantt chart and the		e average		g time and	average	turnaround			
	-	preemptive priorit		-		0	Ũ				
	C C		. ((OR)							
с.									_	~~~	
	-	producer() and con		-				•	5	CO3	K3
d.	-	t of processes arriv			e.						
	Process Arrival			rrival Ti	me	Burst Time					
		P1 0 10									
		P2 0 3			~	004	K2				
		P3 2 6			5	CO4	K3				
		P4		2			2				
	Prepare a Gantt chart and then find the average waiting time and average turnaround										

Prepare a Gantt chart and then find the average waiting time and average turnaround time using preemptive (shortest job first) SJF scheduling.

Apply the FCFS (First-Come, First-Served) disk-scheduling algorithms to determine 5 CO3 K4 the order in which the requests are processed. Assume the disk arm is initially moving toward the higher-numbered cylinders. Find the total number of head movements required. (OR) c. Consider the following reference string representing page requests in a system: Reference String: 5, 3, 6, 4, 2, 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2 5 CO4 K3 The system has 3 page frames available. Simulate the FIFO page replacement algorithm and calculate the number of page faults. d. Given a disk queue with requests to read data from the following cylinder numbers: 98, 37, 183, 122, 14, 124, 56, 67, 90, 25, 145, and assuming that the initial position of the read/write head is at cylinder 50. 5 CO3 K4 Apply the SSTF (Shortest Seek Time First) disk scheduling algorithms to determine

d. Discuss the implementation of semaphores using wait() and signal() operations. 5.a. Describe how a Page Mapping Table (PMT) is used in the paging mechanism for

each.

the first and second variations of the problem.						
(OR)						

b. Describe the Reader-Writer Problem. Provide a semaphore-based solution for both

4.a. Explain the TestandSet() instruction. How does it work, and how can it be used to

c. Consider a system with 5 processes (P0 to P4) and 3 resource types (A, B, C). The following tables represent the Allocation, Maximum need, and Available resources.

tono ving autos represent de l'inceation, manifali need, and l'induce resources.								
Process	P1	P2	P3	P4	P5			
Allocation (A, B, C)	0, 1, 0	2, 0, 0	3, 0, 2	2, 1, 1	0, 0, 2			
Maximum (A, B, C)	7, 5, 3	3, 2, 2	9, 0, 2	2, 2, 2	4, 3, 3			

Available Resources: A = 3, B = 3, C = 2

solve the critical section problem?

Apply the Banker's Safety Algorithm to check if the system is in a safe state. If a process P1 requests additional resources (1, 0, 2), check whether the request can be granted using the Resource Request Algorithm.

5

5 CO₂ address translation. b. What are the four necessary conditions for deadlock? Provide real-life examples for 5 CO₂

(OR)c. Differentiate between fixed partitioning and variable partitioning. Explain the 5 CO₂ concept of partition management in memory.

- d. Briefly explain the working process of the dining philosopher problem for sharing 5 CO3 resources effectively.
- Consider the following reference string representing page requests in a system: 6.a. Reference String: 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 5, 3, 6, 4, 2 5 The system has 3 page frames available. Simulate the LRU page replacement algorithm and calculate the number of page faults.
 - Given a disk queue with requests to read data from the following cylinder numbers: b. 86, 147, 91, 177, 40, 11, 66, 130, 150, 27, and assuming that the initial position of the read/write head is at cylinder 100.

the order in which the requests are processed. Find the total number of head movements required. --- End of Paper ---

CO4 K3

5

5

5

CO3 K3

CO4

CO₄

CO4

K3

K3

K3

K2

K2

K3

K3