

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

B. Tech (Second Semester – Regular/Supplementary) Examinations, April – 2025 23BBSBS10002 - Engineering Physics

(Common for all Branches)

Time: 3 hrs

Maximum: 60 Marks

(The figures in the right hand margin indicate marks)								
$\mathbf{PART} - \mathbf{A} \tag{2 x 5} =$		10 Marks)						
Q.1.	Answer ALL questions	CO #	Blooms Level					
a.	Graphically show three types of damped harmonic oscillator along with their conditions of occurrence.	CO1	K1					
b.	Why magnetic monopole does not exist?	CO2	K1					
c.	Write the two disadvantages and applications of Fibre Optics.	CO3	K1					
d.	Define Isotope effect of a superconductor.	CO4	K1					
e.	If mass of Harry is 78 kg and moving with velocity 10 m/s then calculate the De-Broglie wavelength of Harry.	CO5	К2					

Answer ALL questions

PART – B

(10 x 5 = 50 Marks)

Answer ALL the questions		Marks	CO #	Blooms Level
2. a.	What is Damped harmonic oscillator? Set up the differential equation for a damped harmonic oscillator. Find the solution for the under damped oscillation.	8	CO1	К2
b.	Find the velocity of longitudinal wave in a medium of density $\rho = 9.8 \times 10^3 \text{ Kg/m}^3$ and bulk modulus $B = 12 \times 10^{11} \text{ N/m}^2$	2	CO1	К2
	(OR)			
c.	Explain 'superposition of waves' and its types? Derive the expression of resultant amplitude for two-wave superposition.	7	CO1	К2
d.	Three waves of amplitudes 5cm, 10 cm, 15 cm and same frequency superimpose			
	coherently and in-coherently to produce a resultant wave. Find the ratio of the	3	CO1	К2
	resultant intensities.			
3.a.	(i) State Gauss divergence theorem.			
	(ii) Evaluate Curl of the vector field, $B = (2x+y)i^{-5}yzj^{+6}zk^{-1}$	6	CO2	К2
	(iii) Calculate the Gradient of the scalar field, $\varphi = x^2 + y^2 + z^2$			
b.	Differentiate between conduction current and displacement current.	4	CO2	K1
	(OR)			
c.	Derive the Maxwell electromagnetic wave equations in terms of electric field and magnetic field in free space.	7	CO2	К2
d.	A point source emits light with power 250 W. Find the average value of the			
	Poynting vector at a distance of 2m from the source. Write the unit and dimension of Poynting vector.	3	CO2	К2
4.a.	Determine the reciprocal lattice of Body Centred Cubic (BCC) crystal lattice.	6	CO3	K1
b.	Explain Schottky and Frenkel defect with necessary diagram. (OR)	4	CO3	K1

c.	What is Miller Indices? Discuss the methods to determine the Miller Indices of a	5	CO3	К2
	crystal plane? Explain with example.	5	665	112
d.	State and explain Bragg's law of crystal diffraction.	5	CO3	K1
5.a.	Discuss briefly about the Diamagnetic, Paramagnetic & Ferromagnetic materials.	6	CO4	K1
b.	Write different parts of optical fibre. In an optical fibre, the core material has			
	refractive index 1.6 and refractive index of the cladding material is 1.3. Calculate	4	CO5	К2
	the value of Numerical Aperture?			
	(OR)			
c.	Explain in detail about the Step index and Graded index optical fibre?	4	CO5	K1
d.	Discuss in detail the construction and working principle of He-Ne Laser with	6	CO4	К1
	suitable energy level diagram.	0	04	ΚI
6.a.	State Einstein's concepts of Photoelectric effect. Discuss the experimental			
	procedure in detail. In a photoelectric experiment, the threshold wavelength of			
	tungsten cathode is 2300 Å. Calculate the work function of the metal if it is	8	CO6	К2
	irradiated by a light of wavelength 1800 Å. Find the maximum kinetic energy of			
	the ejected electron.			
b.	Find the De Broglie's wavelength for an electron whose kinetic energy is 0.05	2	CO6	К2
	eV.	2	000	ΝZ
	(OR)			
c.	Explain Heisenberg Uncertainty principle? Using Heisenberg Uncertainty	7	CO6	К1
	principle prove that electron is absent inside the nucleus.	,	000	N1
d.	Write the physical significance of a quantum mechanical wave function? An X-			
	ray having wavelength 1.2 A^0 is scattered by carbon block at 60 ⁰ . Find out the	3	CO6	К2
	Compton shift and wavelength of scattered photons.			

--- End of Paper ---