QP Code: R252A001

Reg. No

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY, ODISHA, GUNUPUR (GIET UNIVERSITY)

B. Tech (Second Semester - Regular/ Supplementary) Examinations, April - 2025

23BBSBS12001 – Engineering Mathematics-II

(Common to all except Biotech)

	(Common to all except Biotech)			
Time: 3 hrs Maximum			ım: 60	Marks
Answer ALL questions				
(The figures in the right-hand margin indicate marks) $ PART - A $ (2 x 5 = 1			10 Ma	rke)
		$(2 \times 3 -$	x 5 = 10 Marks)	
Q.1. A	Answer ALL questions		CO#	Blooms Level
	Form a Partial differential Equation by Elimination of arbitrary constants of $z=(x^2)^2+1$	$(-a)^2 + (y-$	CO1	K2
b. I	Find the Radius of Convergence of $\sum_{n=0}^{\infty} \frac{(4-2i)^n}{(1+5i)^n} (z)^n$		CO2	К3
c. I	Find the Laplace transform of the function t cos3t		CO3	К3
d. V	What do you mean by Directional derivative of a function? Explain?		CO4	K2
e. S	State the Stoke's theorem		CO5	K2
$PART - B ag{10 x 5} = 50$			50 Ma	arks)
Answ	er ALL the questions	Marks	CO#	Blooms Level
2. a.	Solve $x^{2}(y-z)p + y^{2}(z-x)q = z^{2}(x-y)$	5	CO1	K2
b.	Solve $2xz - px^2 - 2qxy + pq = 0$	5	CO1	КЗ
(OR)				
c.	Solve $qz - p^2y - q^2y = 0$	5	CO1	К3
d.	Solve $z(p-q) = z^2 + (x+y)^2$	5	CO1	K2
3.a.	Solve the Differential Equation $y'' + 9y = 0$ by Power Series Method	5	CO2	К3
b.	Find the Centre and Radius of Convergence of $\sum_{n=0}^{\infty} \frac{(n+5i)}{(2n)!} (z-i)^n$	5	CO2	К3
	(OR)			
c.	Solve the Differential Equation $y'' - 2xy = 0$ by Power Series Method	5	CO2	K4
d.	Verify that the Series is Convergent or Divergent $\sum_{n=0}^{\infty} \frac{(20+30i)^n}{n!}$	5	CO2	K4
4.a.	Solve the following Integral Equation $y(t) = te^t - 2e^t \int_0^t e^{-r} y(r) dr$	5	CO3	К3
b.	Solve $y'' - 2y' + y = e^t$ at $y(0) = 2$, $y'(0) = -1$, Using Laplace transform	5	CO6	К3
	(OR)			
c.	Using convolution theorem, find Laplace inverse transformation of the following	g 5	COS	٧v
	$\frac{S}{(S^2+a^2)^2}$	Э	CO3	К3
d.	Find the Laplace transformation of the following function $\frac{\cos 2t - \cos 3t}{t}$	5	CO3	K4
5.a.	Find the Directional derivative of f at point P in the direction of vector	5	CO4	K4

a where,
$$f = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$$
, where P: (-1, 2, 4) $a = 2i - j + k$.

b. Prove that
$$div(fv) = f. div v + v. \nabla f$$
 5 CO4 K4 (OR)

c. Find the Tangent and Unit Tangent vector of the curve

$$r(t) = 2costi + 2sintj + t\hat{k}$$
 at the point (2,0,0)

d. Prove that
$$div(fXg) = g.curlf - f.curlg$$
 5 CO4 K3

6.a. Evaluate
$$\int_0^3 \int_{-y}^y (x^2 + y^2) dx dy$$
 5 CO5 K3

b. Calculate
$$\int_{C} F(r).ds$$
 where $f = \sqrt{2 + x^2 + 3y^2} C : r = [t, t, t^2] \quad 0 \le t \le 3$ 5 CO5 K4

Using Greens theorem, Evaluate the line integral $\oint_C \mathbf{F} \cdot d\mathbf{r}$ where $F[x^2e^y, y^2e^x]$

5

CO4

К3

], over the curve C; the rectangle with vertices (0,0), (2,0), (2,3), (0,3).

d. Evaluate the Integral $\int_{(0,1,2)}^{(1,-1,7)} 3x^2 dx + 2zy dy + y^2 dz$ by Showing Integral is path 5 CO5 K4

Independent. --- End of Paper ---