Reg.

No

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, **ODISHA, GUNUPUR**

(GIET UNIVERSITY)

B. Tech (Second Semester - Regular/Supplementary) Examinations, April - 2025 23BBSES10001 – Basic Electrical and Electronics Engineering

(Common to all Branches)

Time: 3 hrs		Maximum: 60 Marks			
Answer ALL questions					
(The figures in the right-hand margin indicate marks.) PART – A (2 x 5 = 1			10 Marks)		
Q.1. Answer ALL questions		CO #	Blooms Level		
a. A resistor of 10 Ω is connected across a potential difference of 50V. Calculate the dissipated and energy transferred to heat in 20 minutes.	e power	CO1	K1		
b. Two impedances of $Z_1 = (5 + j7) \Omega$ and $Z_2 = (8+j10) \Omega$ are connected in parallel. the net impedance of the combination in polar form.	Find out	CO2	K2		
c. Convert the given number systems $(BA.53)_{16} = (?)_{10}$.		CO4	K2		
d. What is an ideal diode?		CO3	K1		
e. Define temperature sensor.		CO6	K1		
$PART - B \tag{10 x 5} =$					
Answer ALL the questions	Marks	CO #	Blooms Level		
2. a. For the circuit shown in Fig.1, Find V_{CE} and V_{AG} .	5	CO1	K3		
$A = \begin{bmatrix} 6 & B & E & 8 & F \\ \hline 0 & V & 5 & 0 \\ \hline 20 & V & 5 & 5 \\ \hline 9 & C & H & T \\ \hline 0 & V & C & H \\ \hline 0 & V & C & H \\ \hline 0 & V & C & H \\ \hline 0 & V & C & C \\ \hline 0 & V & C \\ \hline 0 & V & C & C \\ \hline 0 & V & V \\ \hline 0 & V & C \\ \hline 0 & V & V \\ \hline 0 &$					
Fig.1 Fig.2	-	001	WO		
b. Determine the current in 5 Ω resistor in Fig.2 by using Mesh Analysis.	5	CO1	K3		
(OR) c. Using Kirchhoff's current law, find the values of the unknown currents in Fig.3.	5	CO1	K3		
$10A \qquad M_{1} \qquad M_{2} \qquad 6A \qquad M_{4} \qquad 9 \Omega_{1} \qquad 86 \Omega_{2} \qquad 10$					

IA

7A

CO1 K3

5

- d. Find the resistance across terminals A and D in Fig.4.
- 5 CO2 Two coils, A and B, are connected in series across a 240-V, 50-Hz supply. The K2 3.a. resistance of A is 6 Ω , and the inductance of B is 0.013 H. If the input from the

supply is 3 kW and 2 kVAR, find the inductance of A and the resistance of B. Calculate the voltage across each coil.

- b. In a circuit, the applied voltage is 100 V and is found to lag the current of 10 A 5 CO2 K2 by 30°. (i) Is the p.f. lagging or leading? (ii) What is the value of p.f.? (iii) Is the circuit inductive or capacitive? (iv) What is the value of active and reactive power in the circuit?
 - (OR)

	(OR)			
c.	Define resonance in an RLC-series circuit. Derive the expression for the quality	5	CO2	K2
	factor at resonance.			
d.	A resistance of 20 Ω , an inductance of 0.2H, and a capacitance of 100 μ F are	5	CO2	K2
	connected in series across 220V, 50Hz mains. Determine the following: (a)			
	impedance, (b) current, (c) voltage across R, L, and C, (d) power in watts and VA			
	(e) power factor and power factor angle.			
4. a.	Define rectifier. Explain the half-wave rectifier with a suitable diagram.	5	CO3	K2
b.	Define PN-junction diode. Explain the VI characteristics of a diode with a suitable	5	CO3	K2
	graph.			
	(OR)			
c.	Explain the Bridge type full-wave rectifier with a suitable diagram.	5	CO3	K2
d.	Define clipper. State and explain different types of clippers with relevant	5	CO3	K2
	diagrams.			
5. a.	Define Universal Gates. Design AND, OR, NOT gates using NAND gate.	5	CO4	K2
b.	State and explain the Function Generator with a neat diagram.	5	CO4	K2
	(OR)			
c.	Perform the following binary operations	5	CO5	K2
	(i) Add $(101111.101)_2$ with $(111011.110)_2$			
	(ii) Subtract $(AA)_{16}$ from $(FF)_{16}$			
d.	Convert (EFF) ₁₆ to	5	CO5	K2
	(i) Binary			
	(ii) Octal			
	(iii) Decimal			
6. a.	Derive the emf Equation of a Single-phase two winding transformer.	5	CO5	K1
b.	A 50 kVA single-phase transformer has 1000 turns on the primary and 100 turns	5	CO5	K2
	on the secondary winding. The primary is connected to a 3000V, 50 Hz supply.			
	Find the full-load primary and secondary currents, the secondary emf, and the			
	maximum flux in the core.			
	(OR)			
c.	Explain different types of DC motors with neat diagrams.	5	CO6	K1
d.	A 6-pole DC shunt generator has 1500 armature conductors in six parallel paths.	5	CO6	K2
	The average flux per pole in the air gap is 0.065 wb. Calculate the generated emf			
	if the generator runs at a speed of 1500 RPM with the help of a prime mover.			
	End of Paper			