Reg.					
No					

Gandhi Institute of Engineering and Technology University, Odisha, Gunupur (GIET University)

B. Tech (Eighth Semester - Regular) Examinations, April – 2025

21BELOE48011/21BEEOE48011 – AI Application to Electrical Engineering

(EE/EEE)

Time: 3 hrs	aximum	: 70 Ma	arks									
(The figures in the right hand margin indicate marks) PART – A (2 x 5 = 10 Marks)												
	$(2 \times 5 =$											
Q.1. Answer <i>ALL</i> questions		CO #	Blooms Level									
a. Define Artificial Intelligence (AI) and explain its significance in electrical engineer	ring.	CO1	K1									
b. How is reinforcement learning applied in electrical system optimization?		CO2	K2									
c. Name two no-code platforms used for predictive maintenance.		CO3	K1									
d. Which model is suitable for predicting failures in motors and transformers?		CO3	КЗ									
e. Mention one advantage of automated power quality monitoring.		CO4	K1									
$\mathbf{PART} - \mathbf{B} \tag{15 x 4} =$												
Answer all the questions	Marks	CO #	Blooms Level									
2. a. Compare and contrast AI with traditional computing in the context of electrical engineering.	8	CO1	K1									
b. Discuss in detail the role of AI in fault prediction and load forecasting in power systems.	7	CO1	КЗ									
(OR)												
c. Describe how AI is used for predictive maintenance in electrical machines with real-world examples.	8	CO1	К4									
d. Analyze the role of AI in smart grids and its impact on energy optimization.	7	CO1	КЗ									
3.a. Explain how AI enhances load forecasting and demand management in modern power systems.	8	CO2	К5									
b. Describe the concept of predictive maintenance in substations using AI. What types of data are used?	7	CO2	К4									
(OR)												
c. Discuss the use of reinforcement learning in the optimization of electrical systems. Provide an application example.	8	CO2	K4									
d. Explain how AI is used in solar power prediction and optimization.	7	CO2	К5									
4.a. Describe the structure and functioning of neural networks and their application in deep learning.	8	CO3	К2									
 b. Explain how Google AutoML and Teachable Machine can be used in electrical engineering applications. (OR) 	7	CO3	К3									
c. Explore how H2O.ai, DataRobot, and Lobe.ai can be applied for predictive maintenance.	8	CO3	К4									
d. Explain AI and IoT integration for smart grids and predictive fault analysis.	7	CO3	КЗ									
5.a. Describe how circuit fault diagnosis can be implemented using no-code tools.	8	CO4	К5									
b. Explain how intelligent systems help balance electrical load across networks.	7	CO4	К4									
(OR)												
c. Describe how equipment health is monitored using machine learning techniques.	8	CO4	К2									
d. How can technology help predict motor and transformer failures? End of Paper	7	CO4	К4									