Reg.					
No					

Gandhi Institute of Engineering and Technology University, Odisha, Gunupur (GIET University)

B. Tech (Seventh Semester - Regular) Examinations, November - 2024 21BCDE47011-Deep Learning

Time: 3 hrs

(CSE(DS))

Maximum: 70 Marks

Answer All uuesuuns											
Answer ALL questions (The figures in the right hand margin indicate marks)											
	(2 x 5 = 10 Marks)										
Q.1. Answer <i>ALL</i> questions	Blooms Level										
a. What are the Applications of Deep Learning? CO1	K1										
b. What is Linear Perceptron? CO1	К1										
c. Define the term early stopping. CO2	K1										
d. What are the Challenges in Sequence Modelling? CO3	K1										
e. Briefly define what an autoencoder is and explain its main objective in the field of neural networks.	K1										
PART – B (15 x 4=60 M	larks)										
Answer All the questions Marks CO #	Blooms Level										
2. a. Describe the working mechanism of McCulloch-Pitts units neuron8CO1	K2										
b. What are the difficulties and challenges of training Deep Neural Networks? 7 CO1 (OR)	K1										
c. Illustrate about different types of activation functions explain with suitable 8 CO2 diagrams and mathematical equations.	K3										
d. Explain Multilayer Perceptron its architecture and Working. 7 CO1	K2										
3.a. Explain the use case and key features of Deep Feed Forward neural network. 8 CO2	K2										
b. Describe the importance of five different types of neural networks. 7 CO1 (OR)	K3										
c. Describe the importance of gradient learning method in deep learning. 8 CO2	K2										
d. Explain pooling, padding and convolution operation with the help of example. 7 CO3	K2										
4.a. What are the optimization methods in deep learning? Explain about Adam and 8 CO2 Adagrad optimizers.	K2										
b. Compare the working mechanism of under complete Autoencoder and Denoising 7 CO4 Autoencoder?	K3										
(OR)											
c. Write a short note on ImageNet, VGGNet and LeNet. 8 CO3	K2										
d. What is Convolution Neural Network? Draw and Explain the Architecture of 7 CO3 CNN?	K3										
5.a. Discuss the role of the encoder and decoder in an autoencoder, and explain how 8 CO4	K2										
they contribute to the overall learning process.											
b. What is Image Segmentation and How it can be done with Autoencoder? 7 CO4 (OR)	K2										
c. Difference between Long Short Term Memory and Recurrent Neural Network? 8 CO3	K2										
d. How does an autoencoder differ from traditional feedforward neural networks in 7 CO4 terms of architecture and functionality?	K2										
End of Paper											

Page 1 of 1