Reg.					
No					

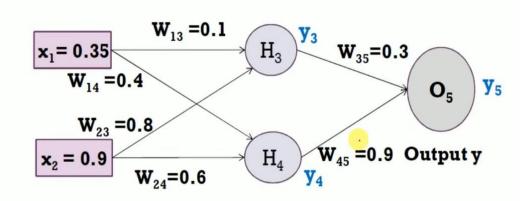
Gandhi Institute of Engineering and Technology University, Odisha, Gunupur (GIET University)

B. Tech (Seventh Semester - Regular) Examinations, November - 2024 **21BCSOE47011 – Data Analytics**

(CSE)

Time: 3 hrs

Maximum: 70 Marks


Answer ALL questions (The figures in the right hand margin indicate marks) PART – A $(2 \times 5 = 10 \text{ Marks})$ CO # Blooms Q.1. Answer ALL questions Level Describe the main difference between ridge regression and lasso regression. CO3 К3 a. What is overfitting in neural networks, and how can it be mitigated? h CO3 κл

υ.	what is overheling in neural networks, and now can it be integrated.	005	114
c.	What are principal components, and why are they important in data analysis?	CO2	КЗ
d.	Describe one application of prescriptive analytics in business.	CO5	КЗ
e.	Explain the goal of Linear Discriminant Analysis.	CO4	К3

PART – B

(15 x 4 = 60 Marks)

Answer All the questions			CO #	Blooms Level
2. a.	Assume that the neurons have a sigmoid functions perform a forward pass. Assume that	8	CO3	К4
	the actual output of $y = 0.5$ and learning rate=1.			

(OR)

4

K5

Κ4

CO4

CO5

- Describe the role of K-Nearest Neighbour (K-NN) in image scene classification. C. 8 Explain how K-NN can be applied in this domain, including the distance metric used and the limitations of K-NN for image classification tasks.
- d. Describe the significance of regularization in regression models. Discuss how 7 regularization helps prevent overfitting, and compare the types of regularization penalties applied in ridge regression and lasso regression.
- 3.a. Assume SVM algorithm, find the hyperplane with maximum margin for the following 8 CO4 K6 data: N=3, X1(mean)=(2,2), X2(mean)=(4,5), X3(7,4), y1=-1, y2=+1, y3=+1.
 - b. Explain Support Vector Machines (SVM) for classification. Describe the concept of 7 CO4 Κ4 margin maximization, the importance of support vectors, and how the kernel trick enables SVMs to perform classification in higher-dimensional feature spaces.

(OR)

c.	Describe the significance of regularization in regression models. Discuss how regularization helps prevent overfitting, and compare the types of regularization	8	CO5	К4
	penalties applied in ridge regression and lasso regression.			
d.	Explain multiple regression with multiple outputs. How does handling multiple output	7	CO5	K6
	variables differ from single-output regression, and what additional considerations are			
	necessary for model evaluation?			
4.a.	Discuss the Perceptron Learning Algorithm. Provide a detailed explanation of how it	8	CO4	K4
	updates weights and converges to a solution. Include limitations, especially with non-			
	linearly separable data, and mention how it can be adapted to solve classification			
	problems.			
b.	Explain Linear Discriminant Analysis (LDA) and its assumptions. Describe the goal of	7	CO5	K4
	LDA in classification and outline the steps for applying it to a dataset. How does it			
	differ from Quadratic Discriminant Analysis (QDA)?			
	(OR)			
c.	Differentiate between R-Squared and Adjusted R-Squared? Find the R-Squared value	8	CO4	K5
	for following information, where intercept is 2.2 & coefficient value is 0.6.			
	X 1 2 3 4 5			
1	Y 2 4 5 4 5 Define and its trace with applications. Evaluin the main trace with	-	60 C	
d.	Define cross-validation and its types with applications. Explain the main types with	7	CO6	K4
~	visualizations for each type to illustrate the process.	•		
5.a.	Compare and contrast ridge regression and lasso regression. Explain how each method	8	CO3	K4
	addresses multicollinearity and overfitting, and describe scenarios in which one might			
1	be preferred over the other.	_		
b.	Describe the process of linear regression using least squares. Explain how the model	7	CO2	K2
	parameters are estimated, and discuss how least squares minimizes the residuals.			
	Include a brief discussion on the assumptions of linear regression.			
	(OR)			
с.	Assume SVM algorithm ,find the hyperplane with maximum margin for the following	8	CO3	K5
	data: N=3, X1(mean)=(2,2), X2(mean)=(4,5), X3(7,4), y1=-1, y2=+1, y3=+1.			
d.	Find linear regression of the data of week (1,2,3,4) and product sales (1,3,4,8) (in	7	CO2	K4
	thousands). Use linear regression in matrix form predict the 5th week sales.			

--- End of Paper ---