QP Code: RN21BTECH567	Reg.						AR 2

Gandhi Institute of Engineering and Technology University, Odisha, Gunupur (GIET University)

B. Tech (Seventh Semester - Regular) Examinations, November - 2024

21BELPE47011/21BEEPE47011 – Smart Grid

(EE/EEE)

Time: 3 hrs Maximum: 70 Marks

Т	Sime: 3 hrs	aximum	: 70 M	arks			
	Answer ALL questions						
D	(The figures in the right hand margin indicate marks)	(2 5 -	10 Ma	wlra)			
P.	ART - A	$(2 \times 5 =$	10 Ma	irks)			
Q.1.	Answer ALL questions		CO#	Blooms Level			
a.	Explain about Outage management system.		CO1	K1			
b.	Write the importance of PMU.		CO2	K1			
c.	What are the benefits of periodic power quality audits for businesses and utilities?		CO3	K1			
d.	Explain the basic operating principle of a micro-turbine for power generation.		CO4	K2			
e.	Write the role GIS in smart grid.		CO1	K2			
PART – B				$(15 \times 4 = 60 \text{ Marks})$			
Ans	wer All the questions	Marks	CO#	Blooms Level			
2. a	. Write short notes on the following:	8	CO1	K1			
	i) Home & building automation ii) Geographic Information system						
b	. Explain the architecture of smart grid with neat diagram.	7	CO1	K2			
	(OR)						
c	. Write short notes on the following:	8	CO1	K2			
	i) Real time pricing ii) Automatic meter reading						
d	. Distinguish between conventional grid and smart grid.	7	CO1	K1			
3.a	. Explain the operation of WAMS with its benefits.	8	CO2	K1			
b	. Explore the technical challenges associated with interconnecting micro-grids	7	CO2	K2			
	with the main power grid, focusing on synchronization, protection, and voltage						
	regulation						
	(OR)						
c	. Describe the core components and functionalities of protection and control	8	CO2	K1			
	systems in micro-grids, highlighting their role in fault detection, isolation, and						
	system restoration						
d			CO2	K2			
	grid-connected, islanded, and transitional modes. What are the key						
	considerations for switching between these modes?						
4.a		8	CO3	K2			
	power quality systems, particularly for utilities, businesses, and consumers.						
-	How can this information be leveraged to improve power quality?						
b		7	CO3	K2			
	frequency regulation, and harmonic distortion, in the context of a smart grid.						
	How do these aspects affect both utility operations and end-users?						

c.	Describe the role of energy storage systems in mitigating power quality issues	8	CO3	K2
	associated with variable renewable energy generation. How do these systems			
	contribute to grid stability and reliability?			
d.	Outline the step-by-step process of conducting a comprehensive power quality	7	CO3	K2
	audit, from initial data collection to the generation of actionable			
	recommendations.			
5.a.	Describe the fundamental principles and operation of energy storage systems,	8	CO4	K2
	including batteries, superconducting magnetic energy storage (SMES), pumped			
	hydro storage, and compressed air energy storage.			
b.	Provide a detailed explanation of the electrochemical processes that occur	7	CO4	K2
	within a fuel cell, highlighting the conversion of fuel into electricity and the			
	associated efficiencies.			
	(OR)			
c.	Write short notes on Pumped Hydro and Compressed Air Energy Storage.	8	CO4	K2
d.	Explain the operational principles of variable speed wind generators, including	7	CO4	K2
	the role of power electronics and variable rotor speeds. How do these features			
	enhance energy capture and efficiency?			