					•
Reg.					AR 21

Gandhi Institute of Engineering and Technology University, Odisha, Gunupur (GIET University)

QP Code: RN21BTECH575

B. Tech (Seventh Semester - Regular) Examinations, November - 2024

21BCHPE47003- INDUSTRIAL ENGINEERING

(Chemical Engineering)

Time: 3 hrs Maximum: 70 Marks

Answer ALL questions

(The figures in the right hand margin indicate marks)

PART - A (2 x 5 = 10 Marks)

Q.1.	Answer ALL questions	CO#	Blooms
_	•		Level
a.	Briefly discuss the difference between manufacturing and service sector with suitable examples.	CO1	K2
b.	Write down the names of different process technologies.	CO1	K1
c.	Write a short note on "Delphi Technique".	CO2	K1
d.	What are the different inputs required for MRP System?	CO3	K1
e.	What are the benefits of TQM?	CO4	K2

 $PART - B ag{15 x 4} = 60 Marks$

Answer All the questions

2. a. An 8 hrs work measurement study in a plant reveals the following-

Unit produced= 320

Idle time= 15%

Performance rating= 120%

allowance= 12% of normal time

Determine the standard time per unit produced.

b. Explain about the different process technologies.

(OR)

c. One inexperienced industrial engineer and one experienced industrial engineer conducted the study simultaneously. They agreed precisely on cycle time (shown below) but opinion on rating the worker differed. The experienced engineer rated

the worker 100% and the other

engineer rated the worker 120%.

They used 10% allowance.

From the observed data, determine the standard time using both engineers point of view.

Cycle time	No. of times observed
20	2
24	1
29	1
32	1

d. What is multiple activity chart? Illustrate it with an example.

5 CO1 K2

CO2

K3

CO#

CO₁

CO₁

CO₁

Blooms

Level

K3

K2

K3

Marks

8

3.a. A firm believes that is annual profit depends on its expenditures for research. The information for the preceding six years in given below. Estimate the profit when the expenditure is 6 units.

Year	1	2	3	4	5	6	7
Expenditure for Research(X)	2	3	5	4	11	5	6
Annual profit(Y)	20	25	34	30	40	31	?

b.		t are the fac facility loca			•	ant and	warehoi	ise loca	tions se	lection?	Explain any	7	CO2	K
		-			((OR)								
c.	The	super Snow	paint sl	op has	recorde	d the de	mand fo	or a part	icular c	olour du	ring the past			
		eks as shov	_	_				•						
		Week		1	-	2	3		4	5	6			
	I	Demand in	Litre	19	9	17	22		27	29	33	8	CO2	k
				_	_						e next week.		002	•
	ii. (Calculate w	eighted	average	e foreca	st for th	ne data,	using a	weight	of 0.6	for the most			
	r	ecent data	and weig	thts of ().3 and (0.1 for s	uccessi	ve older	data.					
4	Dicc	uce varioue	types of	lavout	e and ale	o write	marite	and dam	arite of	tha lavo	ante	7	CO2	k
d.													CO2	Г
.a.	_	al demand										8	CO3	K
		00, carrying				_	_	-		_	a setup is	O	CO3	15
b.		•				•		-	•		50, purchase			
υ.				•							10% per unit		CO3	K
	_	Calculate E		110 10 10	3.10 and	i the car	Tymg C	0313 13 0	мрестес	1 10 00 1	1070 per unit	,	003	1
	P.C.		J Q.		(OR)								
c.	Writ	e a short no	ites on C	anacity		` ′	Planning	r (CRP)				8	CO3	k
d.		and explain			-		-					7	CO3	k
		_		_	7			_		a Find	the optimal		COS	P
.a.		ence and th	_				JUS 110V	v snop	problem	ii. Tillu	me optimai			
	sequ		JOB:	1		2	3		4	5				
			M1:	8		10	6	-	7	8		10	CO4	K
				+										
			M2:	5		6	2		3	4				
			M3:	4		9	8	-	5	5				
b.	Writ	e short note	s on JIT		•	•		•	•			5	CO4	K
					((OR)								
c.	A sn	nall enginee	ering pro	ject co	nsists of	9 activ	ities. Th	nree tim	e estima	ates for	each activity			
	are g	given in tabl	le.											
		(i) Dra	w the ne	twork o	diagram	and ma	rk t e an	each ac	tivity.					
		(ii) Cal	culate E	ST and	LFT and	d mark t	hem on	the net	work dia	agram.				
		(iii) Find the length of critical paths or the total project duration.												
		Activity	1-2	1-6	2-3	2-4	3-5	4-5	6-7	5-8	7-8	10	CO4	K
		Time												
		T ₀	2	2	5	1	5	2	3	2	7			
		T _m	5	5	11	4	11	5	9	2	13			
		Тр	14	8	29	7	17	14	27	8	31			
		- p	14	U	2)	,	1 /	1-7	21	U	J 1			