AY 22

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY, ODISHA, GUNUPUR (GIET UNIVERSITY)

B. Tech (Fifth Semester) Examinations, November – 2024

22BCVPC35002 – Water Resource Engineering

(Civil Engineering)

Time: 3 hrs Ma									ximum: 70 Marks			
				ver ALI	-							
ЛА	(The figu	res in	the ri	ight han	nd marg	in indic	cate mai	· ·		10 37	1)	
PA	RT – A							(.	$2 \ge 5 =$	10 Ma	irks)	
Q.1. Answer ALL questions									CO #	Blooms Level		
a. I	Define probable maximum pre	cipitati	ion.							CO2	K1	
b. A	b. As the rainfall supply continues, the rate of infiltration decreases, Why?									CO3	КЗ	
c. Define Spillway.										CO1	K1	
d. Differentiate between perennial and ephemeral stream.										CO1	K1	
e. V	What is the importance of spec	ific en	ergy	diagram	?					CO1	К2	
$\mathbf{PART} - \mathbf{B} \tag{1}$								15 x 4 = 60 Marks)				
Answer ALL the questions								Marks	CO #	Blooms Level		
2. a.	a. Explain Hydrologic Cycle with neat sketch.										K1	
b.	A 6 hr storm produced rainfall intensities of 7, 18, 25, 12, 10 and 3 mm/hr in successive one hour intervals in a basin of 800 sq.km. The resulting runoff is observed to be 2640 ha.m. Determine Ø- index for the basin.										К2	
			OR)									
c.	Explain briefly the dilution a good tracer for use in this me	ties of a	8	CO3	K2							
d.	How do you measure evapora	/lethod?	7	CO1	K1							
3.a.	. In a 4 hr. storm with 50 mm of excess rainfall from a basin, the flows in the stream were as follows :										K2	
	Time (hrs) : 0	2	4	6	8	12	16	20				
	Flow (m^3/s) : 0 1.	22 4	4.05	6.75	5.67	3.35	1.35	0				
	Determine the ordinates of unit hydrograph. Estimate the peak flow and the time of its occurrence in a flood created by a 8 hr storm, which results in 2.5 cm of effective rainfall during the first 4 hours and 3.75 cm of effective rainfall during the second 4 hours. Assume the base flow as negligible.											
b.	Differentiate between hydrau	g.	7	CO1	K1							
		(OR)									
c.	Explain in detail about the va types of droughts.	8	CO3	КЗ								
d.	Rainfall of magnitude 3.8 durations on a catchment of flow at the outlet of the catch	graph of	7	CO2	К2							

	Time from start of rainfall (h)	-6	0	6	12	18	24	30	36	42	48	54	60	66			
	Observed flow(m3/s)	6	5	13	26	21	16	12	9	7	5	5	4. 5	4. 5			
4.a.	Derive Chezy's equation for open channel flow.													8	CO2	K2	
b.	Water is flowing a critical depth of a section in a trapezodial shaped channel with side slope of 0.5H:1V as shown in the figure. If the critical depth is 1.6m., estimate the discharge in the channel and specific energy at the critical depth.													7	CO2	К3	
(OR)																	
c.	Explain the procedure of deriving Synthetic unit hydrograph for a catchment by using Snyder's method.												ent by	8	CO1	К1	
d.	Explain single ring and double ring infiltrometer.														7	CO1	K1
5.a.	Explain briefly S CURVE with an example.													8	CO1	K1	
b.	Define specific energy. Draw a neat sketch of specific energy curve for a rectangular channel showing all its details.											for a	7	CO3	К2		
(OR)																	
c.	Derive the conditions of the most economical and efficient trapezoidal channel.												8	CO3	K2		
d.	Illustrate the reservoir routing and channel routing method.									7	CO1	K1					
End of Dopor																	

--- End of Paper ---