Reg.						
No						

Gandhi Institute of Engineering and Technology University, Odisha, Gunupur (GIET University)

B. Tech (Fifth Semester - Regular) Examinations, November - 2024

22BCHPC35003 – Transport Phenomenon

(Chemical Engineering)

Time: 3 hrs

PART – A

Maximum: 70 Marks

Answer ALL questions (The figures in the right hand margin indicate marks)

 $(2 \times 5 = 10 \text{ Marks})$

Q.1. Answer ALL questions			Blooms Level
a.	Write the shell momentum balance equation.	CO1	K1
b.	Define thermal diffusivity.	CO1	K1
c.	Thermal conductivity varies with temperature linearly. At $T=T_0$, $K=K_0$ and at $T=T_1$, $K=K_1$.	CO2	K2
	Write the equation relating K and T.		
d.	State the boundary conditions used for solving shell mass balance equations.	CO2	K1
e.	Define degree of turbulence.	CO3	K1

PART – B

(15 x 4 = 60 Marks)

Answer All the questions				Blooms Level
2. a.	Derive an expression for velocity profile when a Bingham fluid is flowing through	10	CO1	K2
	a pipe of radius R vertically downward.			
b.	Explain types of fluids with representation on shear stress and shear strain plot.	5	CO1	K1
	(OR)			
c.	Derive an expression for average velocity of Newtonian fluid flow between two	10	CO1	К2
	vertical walls, separated by a distance 2B. Taking origin at midpoint of 2B			
	distance, develop the expression from shell momentum balance equation.			
d.	Derive an expression for velocity profile when a Newtonian fluid is flowing	5	CO1	K2
	through a pipe of radius R horizontally.			
3.a.	A heated sphere of radius R suspended in a large motionless body of fluid. Show	10	CO2	К2
	that, $Nu = \frac{hD}{K} = 2$. Where <i>h</i> is heat transfer coefficient, <i>D</i> is the diameter of			
	sphere and K is the thermal conductivity.			
b.	State Newton's law of viscosity. In what way are Newton's law of viscosity and	5	CO2	K1
	Fourier's law of heat conduction similar and dissimilar?			
	(OR)			
с.	How is binary diffusivity and self-diffusion defined? Give typical orders of	15	CO2	K1
	magnitude of diffusivity of gases, liquids and solids.			
4.a.	A hollow solid sphere has its inner radius $(r = R_1)$ and outer radius $(r = R_2)$	10	CO3	K2
	maintained at concentrations C_{A1} and C_{A2} respectively. Obtain the concentration			
	profile in the solid at steady-state condition.			
b.	Explain Free and Forced convection	5	CO3	K1
	(OR)			
с.	Consider a long cylindrical nuclear fuel rod, surrounded by an annular layer of	15	CO3	K2
	aluminium cladding. Within the fuel rod heat is produced by fission; this heat			

	source depends on position approximately as, $S_n=S_{no} \times r^2$, where S_{n0} is known			
	constants, and r is the radial coordinate measured from the axis of the cylindrical			
	fuel rod. R_F and R_C are the radius of fission and cladding materials.			
	Derive an expression for temperature profile in the cladding material if the			
	temperature at the outer surface of cladding is T0.			
5.a.	Explain Prandtl mixing length concept in turbulent flow.	10	CO4	K1
b.	Derive the formula for Fanning's friction factor.	5	CO4	К2
	(OR)			
с.	Derive the dimensionless shell energy balance differential equation in turbulent	15	CO4	K1
	pipe flow and mention the boundary conditions.			

--- End of Paper ---