Reg.					
No					

Gandhi Institute of Engineering and Technology University, Odisha, Gunupur (GIET University)

B. Tech (Fifth Semester - Regular) Examinations, November – 2024 22BELPC35003/22BEEPC35003 – Signals & Systems

(EE/EEE)

Time: 3 hrs

Maximum: 70 Marks

			0 1.10			
Answer ALL questions (The figures in the right hand margin indicate marks)						
PART – A			(2 x 5 = 10 Marks)			
Q.1	Answer ALL questions	(CO #	Blooms Level		
a.	State the final value theorem with regard to Z-transform.	(CO2	K1		
b.	What is the difference between Power & Energy Signals?	(01	K2		
c.	Write 2- similarities and differences in convolution and correlation of two seque	ences.	03	K2		

- d. Define FIR and IIR systems.
- e. Define scaling property in Z-transform.

PART – B

(15 x 4 = 60 Marks)

CO2

CO5

К1

K2

Answer ALL the questions			CO #	Blooms Level
2. a.	Determine whether the following system is Static/ Dynamic, Causal/ Non-causal		CO2	КЗ
	and Stable/unstable. $y(n) = nx(n)$			
b.	Two sequences $x_1(n)$ and $x_2(n)$ are given as	7	CO3	КЗ

 $x_1(n) = \{2, 1, 2, 1\}$ and $x_2(n) = \{1, 2, 3, 4\}$, find the circular convolution of the

above two sequences.

(OR)

- c. Determine whether the following system is Linear/ Non-linear and Shift 8 CO2 K3 Invariant/ Shift Variant and Stable/Unstable. y(n) = x(2n)
- d. Find the linear convolution g(n) = x(n) * h(n) of two discrete-time sequences 7 CO3 K4 which are given by $x(n) = \{1, 1, 0, 1, 1\}, h(n) = \{1, -2, -3, 4\}$

3.a. Perform cross-correlation $r_{xy}(m)$ of two sequences using tabular method 8 CO4 K4 $x(n) = \{1, 1, 2, 2\}$ and $y(n) = \{1, 3, 1\}$

b. $x(t) = 10\cos 100 \pi t$ If the sampling frequency is 75Hz, find the discrete-time 7 CO2 K3 equivalent of the signal x(n) also find an alias frequency corresponding to Fs = 75Hz.

c.	Define auto-correlation and cross-correlation of sequences. Perform the auto-	8	CO4	КЗ
	correlation $r_{xx}(m)$ of sequence $x(n) = \{1, 2, 3, 4\}$			
d.	Construct the block diagram & signal flow graph of the discrete time system	7	CO2	К2
	whose input output relation is described by the difference equation			
	y(n) = 0.25y(n-1) + 0.5x(n) + 0.75x(n-1)			
4.a.	Let $x(n) = \left(\frac{1}{2}\right)^n u(n) + \left(\frac{1}{4}\right)^n u(-n-1)$	8	CO5	K5
	Find the Z-transform and RoC of $X(z)$			
b.	Find the initial and final values of the corresponding sequence $x(n)$	7	CO5	КЗ
	Given by $X(z) = 2 + 3z^{-1} + 4z^{-2}$			
	(OR)			
c.	Determine the Z-transform of $x(n) = (n - 3)u(n)$	8	CO5	КЗ
d.	Find the initial and final value of the following Z-domain signals.	7	CO5	КЗ
	$X(z) = \frac{2z^{-1}}{1 - 1.8z^{-1} + 0.8z^{-2}}$			
5.a.	Determine the inverse Z-transform of the function by Cauchy's integral method.	8	CO5	К5
	$X(z) = \frac{z^2 + z}{(z - 2)^2}$			
b.	The transfer function of an LTI system is $H(z) = \frac{z-1}{(z-2)(z+3)}$, Determine the	7	CO5	K4
	impulse response.			
	(OR)			
c.	Find the inverse Z-transform of $X(z) = \frac{0.25z^{-1}}{(1-0.5z^{-1})(1-0.25z^{-1})}$	8	CO5	K5
	When (i) RoC is $ z > 0.25$ (ii) RoC is $0.25 < z < 0.5$			
d.	Solve the discrete time system described by difference equation	7	CO3	КЗ

$$x(n+2) + 3x(n+1) + 2x(n) = 0$$

Given the initial conditions x(0) = 0 and x(1) = 1

--- End of Paper ---