Reg.						
No						

Gandhi Institute of Engineering and Technology University, Odisha, Gunupur (GIET University)

B. Tech (Fifth Semester - Regular) Examinations, November - 2024

22BCVPC65001 – Reinforced Concrete Design

(Civil Engineering)

Time: 3 hrs

PART – A

Maximum: 70 Marks

Answer ALL questions (The figures in the right hand margin indicate marks)

Q.1. Answer ALL questions			Blooms Level
a.	Define limit state of collapse.	CO1	K1
b.	Differentiate between bending moment and torsion.	CO2	K1
c.	Explain slenderness ratio.	CO3	K2
d.	Differentiate between shallow and deep foundation.	CO4	K1
e.	Define M25 grade concrete.	CO1	K1

PART – B

(15 x 4 = 60 Marks)

Answer All the questions			CO #	Blooms Level
2. a.	Design a simply supported beam of size bxd 250mm x 400 mm for a bending	8	CO1	K3
	moment of 175 kNm. Use M20 grade concrete and Fe 500 Steel.			
b.	Explain creep in concrete. List all advantages of RCC Structures	7	CO1	К2
	(OR)			
с.	Design a simply supported beam of clear span 6m The beam is subjected to a	8	CO1	К3
	UDL of 30kN/m. Materials used are M20 grade and Fe500 steel.			
d.	Define M20 grade concrete and the values of cover block for beams and	7	CO1	К1
	foundations.			
3.a.	Design a simply supported beam of size bxd 225mm x 350 mm for a SF OF 150	8	CO2	КЗ
	kN. Use M20 grade concrete and Fe 500 Steel. The beam is reinforced with			
	3x12 +1x10mm bars as tensile reinforcement.			
b.	Check for deflection of a simply supported beam of clear span 5m. The size of	7	CO2	КЗ
	the beam is 230 mm x 400 mm bxd.			
	(OR)			
с.	Design a simply supported beam of size bxd 230 mm x 350 mm for a UDL of	8	CO2	КЗ
	30KN/m. Use M20 grade concrete and Fe 500 Steel. The clear span of beam is 5			
	m. The beam is reinforced with 3x10mm bar at bottom.			
d.	Differentiate between axial force and shear force. Describe the effect of shear	7	CO2	К2
	force in beams.			
4.a.	Design a circular column to carry an axial load of 1000 KN .Use M20 grade	8	CO3	КЗ
	concrete and Fe 500 steel .Assume any necessary data.			
b.	Design a one-way slab for 2 x 6 m room. Live load = 10 kN/m ² , Floor Finish	7	CO3	КЗ
	1kN/m ² . USE M20 grade and Fe500 steel.			
	(OR)			

c.	Compute the load carrying capacity of a rectangular column of size 300 x 500 mm and reinforced with 8x16 mm diameter bars. Material used are M20/Fe500 steel.	8	CO3	КЗ
d.	Design a roof slab for a room size of $4x6$ m. Live load on slab is 10 kN/m^2 and floor finish is 1 kN/m^2 . Use M20 grade concrete and Fe 500 steel.	7	CO3	K3
5.a.	Design a foundation for a square column of size 300x300mm. The axial load on the column is 1000 kN. SBC of soil is 200kN/m ² . Use M20 concrete and Fe500 Steel.	8	CO4	К3
b.	Explain self-compacting concrete and light weight concrete.	7	CO4	К1
0.	(OR)	,		
c.	Design a foundation for a circular column of size $400x400$ mm. The axial load on the column is 1500 kN. SBC of soil is 220 kN/m ² . Use M20 concrete and Fe500 Steel.	8	CO4	КЗ
d.	Describe shallow foundation and pile foundation.	7	CO4	K1

--- End of Paper ---