| QP Code: RN22BTECH261 | Reg. |  |  |  |  |  | AR 22 |
|-----------------------|------|--|--|--|--|--|-------|

## Gandhi Institute of Engineering and Technology University, Odisha, Gunupur (GIET University)



B. Tech (Fifth Semester - Regular) Examinations, November - 2024

## 22BCVPC65003 – Geotechnical Engineering-II

(Civil Engineering)

| ENGELLANC | (Civil Engineering)                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |        |                 |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------|-----------------|--|
| Tir       | me: 3 hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum: 70 Marks                  |        |                 |  |
|           | Answer ALL questions                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |        |                 |  |
| DA1       | (The figures in the right hand margin indicate marks)                                                                                                                                                                                                                                                                                                                                                                                                                  | (2 5                               | 10 N/- | 1\              |  |
| PA        | RT - A                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(2 \times 5 =$                    | 10 Ma  | rks)            |  |
| Q.1. A    | answer ALL questions                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    | CO#    | Blooms<br>Level |  |
| a. I      | Define Boussinesq's influence factor.                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    | CO1    | K1              |  |
| b. H      | Iow are Caissons classified based on the method of construction?                                                                                                                                                                                                                                                                                                                                                                                                       |                                    | CO2    | K1              |  |
| c. V      | What steps are to be taken to reduce the harmful effects of settlements?                                                                                                                                                                                                                                                                                                                                                                                               |                                    | CO2    | K1              |  |
|           | Define isobar and specify its practical significance.                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    | CO3    | K1              |  |
| e. E      | Explain infinite slopes.                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    | CO4    | K2              |  |
| PAI       | RT – B                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(15 \times 4 = 60 \text{ Marks})$ |        |                 |  |
| Answe     | er All the questions                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Marks                              | CO#    | Blooms<br>Level |  |
| 2. a.     | Define & Explain Gross ultimate bearing capacity, Net ultimate bearing capacity Net safe bearing capacity and Allowable bearing capacity.                                                                                                                                                                                                                                                                                                                              | , 8                                | CO1    | K1              |  |
| b.        | A concentrated load of 22.5 kN acts on the surface of a homogeneous soil mass of large extent. Find the stress intensity at a depth of 15 meters: (i) directly under the load, and (ii) at a horizontal distance of 7.5 meters. Use Boussinesq's equations.                                                                                                                                                                                                            | 7<br>r                             | CO1    | K2              |  |
|           | (OR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |        |                 |  |
| c.        | Derive the principle of construction of Newmark's chart and explain its use.                                                                                                                                                                                                                                                                                                                                                                                           | 8                                  | CO1    | K2              |  |
| d.        | Critically differentiate between Boussinesq's theory and Westergaard's theory.                                                                                                                                                                                                                                                                                                                                                                                         | 7                                  | CO1    | K1              |  |
| 3.a.      | In a consolidation test the following results have been obtained. When the load was changed from $50 \text{ kN/m}^2$ to $100 \text{ kN/m}^2$ , the void ratio changed from $0.70 \text{ to}$ 0.65. Determine the coefficient of volume decrease, $m_v$ and the compression index, $Cc$ .                                                                                                                                                                               |                                    | CO2    | K2              |  |
| b.        | Discuss the procedure to determine the safe bearing capacity and settlement from plate load test data.                                                                                                                                                                                                                                                                                                                                                                 | n 7                                | CO2    | K1              |  |
|           | (OR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 0                                | 602    | 1/2             |  |
| c.        | Calculate the safe bearing capacity of a strip footing, 1m wide, in a soil with $\gamma=18 \text{kN/m}^3$ , $c=20 \text{kN/m}^2$ , and $\emptyset=20^0$ , at a depth of 1m. Terzaghi's bearing capacity factors may be assumed as Nc=8.682, Nq=2.256, N $\gamma$ =4.16. Factor o                                                                                                                                                                                       | g                                  | CO2    | К2              |  |
| d.        | safety against shear failure=3.0 A column carries a load of 1000 kN. The soil is a dry sand with density = 19 kN/m³ and having an angle of internal friction of $40^{\circ}$ . A minimum factor of safety of 2.5 is required and Terzaghi factors are required to be used. (N $\gamma$ = 42 and No = 21). Find the size of a square footing required if it is placed at 1m below ground surface with water table at ground surface. Assume $\gamma_{sat} = 20 kN/m³$ . | y<br>1                             | CO2    | K2              |  |

A soil sample with porosity of 40% has degree of saturation of 50%. Taking CO3 K2 7 specific gravity of soil solids as 2.66, compute dry, saturated, submerged and bulk unit weight of the sample. b. A retaining wall with a vertical smooth back is 6 m high. It supports a cohesion 8 CO3 K2 less soil ( $\gamma = 19$ kN/m<sup>3</sup>,  $\phi = 30^{\circ}$ ). The surface of the soil is horizontal and carries a surcharge of 15kPa. Determine the Active thrust on the wall. (OR) c. Describe with a neat sketch how will you carry out the wash boring method of CO3 8 K2 soil exploration? What are its merits and demerits? A retaining wall supports a two layered backfill having the following properties: 7 CO3 K2 Upper layer: angle of internal friction=30°; unit weight=16KN/m³; thickness=3m Lower layer: angle of internal friction=45°; unit weight=20KN/m³; thickness= 2m. Determine the total passive earth pressure. State and explain different types of slopes and list the assumptions made in the 8 CO<sub>4</sub> Κ1 slope stability analysis. Explain Swedish circle method for cohesive soil. 7 CO4 Κ1 Write critical notes on the friction circle method of analyzing the stability of 15 CO4 К3 slopes. An embankment is inclined at an angle of 35<sup>0</sup> and its height is 15 m. The angle of shearing resistance is 150 and the cohesion intercept is 200 kN/m<sup>2</sup>. The unit weight of soil is 18.0 kN/m<sup>2</sup>. The Taylor's stability number is 0.06, find the

--- End of Paper ---

factor of safety with respect to cohesion.