QP Code: RN22BTECH227 Re	eg.						AR 22

Gandhi Institute of Engineering and Technology University, Odisha, Gunupur (GIET University)

B. Tech (Fifth Semester - Regular) Examinations, November - 2024

22BBTPC35001 – Genetic Engineering and r-DNA Technology (Biotechnology)

Ti	me: 3 hrs	Maximum: 70 Marks			
	Answer ALL questions				
D.A	(The figures in the right hand margin indicate marks)	(2 5	10 M-	1	
PA	RT - A	$(2 \times 5 = 10 \text{ Marks})$			
Q.1. A	Answer ALL questions		CO#	Blooms Level	
a.	Write down the functions of Ligase in r-DNA technology.		CO1	K1	
b. 1	Differentiate between isoschizomers and neoschizomers with examples.		CO2	K1	
	How to avoid re-circularization of a DNA digested with restriction enzyme?		CO3	K2	
	Emphasize the applications of DNA foot printing,		CO4	K1	
e. l	Define gene knockout. Give an example of a knockout organism.		CO3	K1	
PA	RT – B	$(15 \times 4 = 60 \text{ Marks})$			
Answ	er All the questions	Marks	CO#	Blooms Level	
2. a.	Write the functions and reaction mechanism of Polynucleotide kinas a Alkaline phosphatase.	nd 7	CO1	K2	
b.	Explain the cloning mechanism by using Bacteriophage vector.	8	CO1	K2	
	(OR)				
c.	Discuss the mechanism of cloning using YAC vector.	7	CO1	K2	
d.	Explain the steps of isolation and purification of DNA.	8	CO1	K2	
3.a.	Explain the process of preparation cDNA and construction of cDNA library.	8	CO2	K2	
b.	Write the mechanism and importance of three hybrid system with diagram	7	CO2	K2	
	(OR)				
c.	Illustrate the method of preparation of DNA chips.	7	CO2	K2	
d.	Discuss how RT-PCR is important for detection of gene expression.	8	CO2	K2	
4.a.	Explain the principle and techniques of Maxam and Gilbert's method.	8	CO3	K2	
b.	Discuss briefly about any two methods of screening of recombinants.	7	CO3	К3	
	(OR)				
c.	Discuss the strategies used to expression of heterologous gene in prokaryo cells.	tic 8	CO3	К3	
d.	Define Ribozyme? Classify and explain the types with applications	7	CO3	K1	
5.a.	Write the types, strategies and advantages of gene therapy.	8	CO4	K1	
b.	Define site directed mutagenesis. Explain the process of mutagenesis using M DNA.	113 7	CO4	K2	
	(OR)				
c.	Dicuss on molecular marker. Explain the principle and techniques of RFLP	8	CO4	K2	
d.	How 16S rRNA sequencing is used for genome analysis? Explain.	7	CO4	K2	

--- End of Paper ---