Time: 3 hrs

Reg.					
No					

Gandhi Institute of Engineering and Technology University, Odisha, Gunupur (GIET University)

B. Tech (Fifth Semester - Regular) Examinations, November - 2024

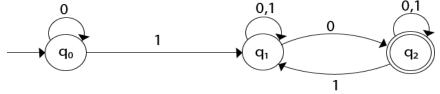
22BCSPC35003/22BCMPC35003/22BCDPC35003- Formal Languages and

Automata Theory

(CSE,CSE(AIML), CSE(DS))

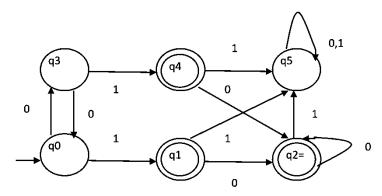
Maximum: 70 Marks

Answer ALL questions (The figures in the right hand margin indicate marks)						
			(2 x 5 = 10 Marks)			
Q.1	Answer ALL questions	CO #	Blooms Level			
a.	Describe the DFA with its tuples.	CO1	К2			
b.	Construct a DFA for the following regular expression	CO2	КЗ			
	(a+b) [*] abb					
c.	Construct the PDA for the language	CO3	КЗ			
	$L = \{a^{3n}b^n : n \ge 1\}$					
d.	Why Church Turing hypothesis is important? Write the key models of comput	ation CO4	КЗ			


related to Church Turing hypothesis. e. Write the difference between Recursive and Recursively Enumerable sets with suitable CO4 К2

PART – B

example.


(15 x 4 = 60 Marks)

Answer All the questions			Blooms
	S		Level
2. a. Construct a DFA for accepting the binary numbers, which are not divisible by 3.	8	CO1	К4
b. Convert the following NFA to DFA.	7	CO1	К4

(OR)

Minimize the number of states of the given DFA. с.



Construct \in -NFA of Regular Language L = 0(0+1)*1 and L = (00)*1(11)* 7 К4 d. CO1

8 CO1 Κ4

- 3.a. Write Regular Expression for the language having a string which should have 8 CO2 K3 atleast one 0 and alteast one 1.
 - b. Write the regular expression for the language L over $\sum = \{0, 1\}$ such that all the 7 CO2 K3 string do not contain the substring 01.

c. Construct the regular expression which represents the regular set accepted by the 8 CO2 K4 following finite automation.

1		_		
d.	"Regular expressions provide a powerful tool for textual search in computers"	7	CO2	КЗ
	Justify the statement with suitable example.			
4.a.	Design a Turing machine for 2's complement of any binary number.	8	CO3	К4
b.	Construct a PDA equivalent to the following context-free grammar	7	CO3	К4
υ.		/	003	Ν4
	$L = \{0^{n}1^{m}2^{m}3^{n} \mid n \ge 1, m \ge 1\}$			
	(OR)			
с.	Construct a PDA for language	8	CO3	К4
	$L = \{0^{n}1^{m} n \ge 1, m \ge 1, m > n+2\}$			
d.	Describe CFG with its tuples.	7	CO3	КЗ
u.	Desence et 6 with its tuples.	,	005	K5
_		•	60 4	1/2
5.a.	Explain Polynomial time reducibility and how it is important in proving a	8	CO4	КЗ
	problem is in NP-Complete? Illustrate with suitable Example.			
b.	Prove that the Travelling Salesman Problem is NP-complete.	7	CO4	К4
	(OR)			
с.	Explain how the Ackermann function serves as an example of a total, computable,	8	CO4	КЗ
	but non-primitive recursive function.	C		
1	•	_	~~ .	
d.	Explain Gödel numbering. Discuss the importance of Gödel numbering in linking	7	CO4	КЗ
	syntax and semantics of formal systems.			

--- End of Paper ---