QP Code: RN22BTECH281

Reg.					
No					

Maximum: 70 Marks

Gandhi Institute of Engineering and Technology University, Odisha, Gunupur (GIET University)

Time: 3 hrs

B. Tech (Fifth Semester - Regular) Examinations, November - 2024 **22BECPC35004 – ELECTROMAGNETIC WAVES** (Electronics & Communication Engineering)

(Electronics & Communication Engineering)

Answer ALL questions							
(The figures in the right hand margin indicate marks) PART – A (2	x 5 = 10 Marks)						
Q.1. Answer ALL questions		СО	Blooms Level				
a. Find the gradient of the following scalar fields: $V = e^{-z} \sin 2x \cosh y$		CO1	K2				
b. In a medium, the electric field intensity $E = 10sin(1000t-10x)a3V/m$. Calculate the displacement current density ($\epsilon r = 80$, $\epsilon 0 = 8.854 \times 10^{-12} F/m$).		CO2	К3				
c. Define Skin Depth with proper expression		CO3	K2				
d. Differentiate between phase velocity and group velocity with expressions.		CO4	K2				
e. Define skin depth.		CO4	K1				
$\mathbf{PART} - \mathbf{B} \tag{1}$	5 x 4 =	5 x 4 = 60 Marks)					
Answer All questions	Marks	CO #	Blooms				
2. a. Two dipoles with dipole moments $-5az$ nC/m and $9az$ nC/m are located at points $(0, 0, -2)$ and $(0, 0, 3)$, respectively. Find the potential at the origin.	8	CO1	Level K2				
b. If $A = 10a_x - 4a_y + 6a_z$ and $B = 2a_x + a_y$, find: (i) the component of A along a_y , (ii) the magnitude of 3A - B, (iii) a unit vector along A + 2B. (OR)	7	CO1	K3				
c. A charge distribution with spherical symmetry has density. $\rho_{\nu} = \begin{cases} \frac{\rho_{0}r}{R}, & 0 \le r \le R\\ 0, & r > R \end{cases}$	8	CO1	K2				
Determine E everywhere.	_	~~.					
 d. Planes z = 0 and z= 4 carry current K= -10ax A/m and K = 10ax A/m respectively. Determine H at a) (1,1,1) b) (0,-3,10) 	7	CO1	К3				
3.a. Region $0 \le z \le 2 m$ is occupied by an infinite slab of permable material ($\mu_r = 2.5$). If B= 10ya _x - 5xa _y mWb/m ² within the slab, determine a) J b) J _b c) M d) K _b on z = 0.	8	CO2	K3				
b. Explain in detail about Biot Savarts Law with diagram and expressions. (OR)	7	CO2	K3				
c. Explain about Faradays Law of Electromagnetic induction.	7	CO2	K3				
d. Give the analogy between Electric and Magnetic circuits. List the Maxwell equations in differential form and Integral form? Derive any two.	7	CO2	К3				
4.a. A uniform plane wave propagating in a medium has	8	CO3	K2				
$E = 2e^{-\alpha z}\sin(10^8t - \beta z) a_y V/m$							

If the medium is characterized by $\in_r = 1, \mu_r = 20$, and $\sigma = 3 \frac{mhos}{m}$, find α , β and

H.			
b. A plane wave $E = E_0 \cos(\omega t - \beta z) a$, is incident on a good conductor at $z = 0$.	7	CO3	K2
Find the current density in the conductor.			
(OR)			
c. Explain with diagram about the reflection of a plane wave at normal and at	8	CO3	K1
oblique incidence.			
d. Write down the parameters for the plane wave in lossless dielectric, free space and	7	CO3	K1
good conductor			
5.a. A lossless transmission line of length 100 m has an inductance of 28μ H and a	8	CO4	K3
capacitance of 20 nF. Find			
i) Phase velocity			
ii) Characteristic impedance			
iii) Phase constant at 100 KHz frequency			
b. A lossless transmission line has characteristic impedance 50 ohm and a phase	7	CO4	K3
constant 3 rad/m at 10 MHz frequency. Find inductance and capacitance value.			
(OR)			
c.Define lossless and distortion less transmission line with proper expressions. Derive	8	CO4	K2
expression for the input impedance of the transmission line			
d.Derive the equations for circuit model of a transmission line with proper diagram.			K1

--- End of Paper ---

 $\mathbf{E} = E_0 \cos\left(\omega t - \beta z\right) \mathbf{a},$