Reg. No

AY 22

Gandhi Institute of Engineering and Technology University, Odisha, Gunupur (GIET University)

B. Tech (Fifth Semester – Regular) Examinations, November – 2024

22BECPC35003 – Digital Signal Processing

(ECE)

Time: 3 hrs	Maximum	Maximum: 70 Marks		
(The figures in the right-hand margin indicate marks)			_ `	
$\mathbf{PART} - \mathbf{A} \tag{2 x 5 = 10 Marks}$			ırks)	
Q.1. Answer ALL questions		CO #	Blooms Level	
a. Distinguish between linear and circular convolution of two sequences.		CO1	К4	
b. What is transposition theorem?		CO4	K1	
c. Find the value of x ((n-753)) ₄ if $x(n) = \{1, 2, -2, 4\}$?		CO2	КЗ	
d. What is SIF of 64-point DFT?		CO2	К5	
e. Explain the advantages and disadvantages of FIR filter?		CO3	К2	
PART – B	(15 x 4 =	(15 x 4 = 60 Marks)		
Answer All the questions	Marks	CO #	Blooms Level	
2. a. Evaluate the output y(n) of a filter whose impulse response	10	CO1	K5	
is $h(n) = \{1,1,1\}$ and input signal $x(n) = \{3, -1,0,1,3,2,0,1,2,1\}$				
using overlap save method.				
b. Proof that DFT is a linear transformation.	5	CO1	K3	
(OR)				
c. State and prove the Parseval's relation.	5	CO1	K2	
d. Find the circular convolution using DFT & IDFT if $p(n) = \{1,2,3,1\}$ and $q(n \{4,3,2,2\}$?	n)= 10	CO1	K5	
3.a. Draw and explain the basic butterfly diagram of DIT-FFT algorithm.	8	CO2	K5	
b. Compute the 8-point DFT using DIF-FFT algorithm if $x(n) = \{1, -2, 2, 3, -1, 4\}$	7	CO2	K4	
(OR)				
c. Find the DFT of the given signals using 4-point DFT if $g(n)=\{1,2,0,1\}$	and 8	CO2	K5	
$h(n) = \{2, 2, 1, 1\}$				
d. Draw the 16-point butterfly structure of DIF-FFT algorithm?	7	CO2	K3	
4.a. Find the system function and Draw the linear phase structure and Direct for	rm 10	CO3	K5	
structure if $h(n) = \{1, -2, 3, -1, 3, -2, 1\}$				
b. Obtain the transfer function of 4th order FIR Filter and draw the direct for	orm 5	CO3	K6	
structure.				
(OR)				
c. Design a FIR filter using Hanning window of length 7 if the desired frequen	ncy 10	CO3	K6	
response is				

$$H_{d}(\omega) = \begin{cases} e^{-j2w} & for -\frac{\pi}{4} \le \omega \le \frac{\pi}{4} \\ 0 & for \ elsewhere \end{cases}$$

d. Draw the Direct form-II structure of 2y(n)-4y(n-2)=4x(n)-3x(n-3)-7y(n-4) 5 CO4 K3

5.a. Design a digital IIR filter using impulse invariant method and the system 10 CO4 K6 function is

$$H(s) = \frac{7}{(s+1)(s-5)}$$

- b. Draw the SFG of 3y(n)-4y(n-2)+4x(n)-3x(n-2)-7y(n-3)=0 5 CO4 K3 (OR)
- c. Design a digital IIR filter using Bilinear Transformation method with sampling 8 CO4 K6 period 2 seconds and the system function is

$$H(s) = \frac{2}{(s-3)(s+4)}$$

d. Establish the relationship between ω and Ω in bilinear transformation method? 7 CO4 K5

--- End of Paper ---