Reg.					
No					

Gandhi Institute of Engineering and Technology University, Odisha, Gunupur (GIET University)

B. Tech (Fifth Semester - Regular) Examinations, November - 2024 22BCMPC35002 – Data Mining and Predictive Modeling (CSE-AIML)

Time: 3 hrs

Maximum: 70 Marks

Answer ALL questions (The figures in the right-hand margin indicate marks)							
PART – A	·	(2 x 5 = 10 Marks)					
Q.1. Answer ALL questions	CO #	Blooms Level					
a. Describe data preprocessing and why it is important.	CO1	К2					
b. Differentiate between filter, wrapper, and embedded approaches.	CO2	К4					
c. What are ensemble methods, and why are they useful?	CO3	К1					
d. What is cross-validation, and why is it used?	CO4	К1					
e. Explain the use of ROC curves and their interpretation.	CO4	К2					
PART – B	(15 x 4 = 60 M)	(15 x 4 = 60 Marks)					

Answer All the questions								CO #	Blooms Level
2. a.	. Discuss the steps in KDD with a neat diagram.								K2
b.	A dataset co	7	CO1	K3					
	Age: [25, 27, 29, NaN, 35, 1000, 30, NaN, 33, 28]								
	(i) Identify the outliers and replace them with suitable values.								
	(ii) Handle the missing values using mean imputation and median								
	imputation. Discuss the impact of each method on the dataset.								
			(OR))					
с.	Discuss the	steps in Predic	tive Modelin	ng with a neat	diagram.		8	CO1	K2
d.	Normalize the following dataset using Min-Max normalization and Z-score								K2
	normalizatio	on:							
	Valu	es: [25, 30, 35	5, 40, 45, 50,	55, 60]					
	(i) Perform Min-Max normalization to scale values between 0 and 1.								
	(ii) Perform Z-score normalization and interpret the transformed data								
	values.								
3.a.	a. Given a dataset with two features for five samples:						15	CO2	K3
	Feature X: [2, 4, 5, 6, 8]	Feature Y: [1, 3, 3, 5, 7]					
	(i) C	Calculate the c	ovariance ma	atrix.					
	(ii) Derive the eigenvalues and eigenvectors.								
	(iii) Perform PCA and project the data onto the first principal component.								
	(OR)								K3
b.								CO2	
		th Algorithm	with a minin	num support	count of 3 for	r the given da	ta		
	set.					[]			
	TID T1 T2 T3 T4 T5								

b,c,k,s,p

b,f,h,j,o

a,f,c,e,l,p,

m,n

f,a,c,d,g,i,

m,p

Items

Bought

a,b,c,f,l,m,

0

4.a. A logistic regression model is used to predict whether a patient has a particular 8

CO3

K3

4 .a.	A logistic	regression mo	Juel 18 used to	predict whe		0	005	K5
	Patient	Age(Years)	Cholesterol	Disease	disease (1 for disease, 0 for			
			Level	(1 = Yes,	no disease) based on their			
			(mg/dL)	0 = No)	age and cholesterol level.			
	1	45	210	0	A small dataset of five			
	2	50	220	0	patients is provided below:			
	3	55	250	1				
	4	60	260	1	Given this data, answer the			
	5	65	270	1	following questions:			
	(i)	(i) Set Up the Logistic Regression Model:						
	(ii)							
	(iii)							
	(iv)							
	(v)	Predict the P	robability of a	new patient				
b.	Describe	Describe how a neural network works in predictive modeling.						K2
			(OR)				
с.	Consider a dataset with two features and a binary outcome:							K3
	Feature X: [2, 3, 10, 11], Feature Y: [5, 4, 6, 7], Outcome: [0, 0, 1, 1]							
	(i) Construct two simple decision trees using subsets of this data.							
	(ii)							
		benefit of usi	ing ensemble n	nethods in th	is context.			
d.								K2
	system.							
5.a.	A binary of	natrix on a test set:	8	CO4	K2			
	True Posi	False Positive (FP): 10, False						
	Negative							
	(i) Calculate accuracy, precision, recall, F1 score, and specificity.							
	(ii) Interpret each metric and discuss which metric would be most							
		-	the model were					
b.	Describe				ime series forecasting.	7	CO4	K2
			(OR)	C			
c.	Discuss t	he impact of	overfitting and	d how it car	n be controlled in predictive	8	CO4	K2
	modeling.		C		-			
d.	Write a sh	nort note on Sn	noothing Tech	niques		7	CO4	K1
	(i)	Moving Ave	e	•				
	(ii) Exponential Average							