Reg.					
No					

Gandhi Institute of Engineering and Technology University, Odisha, Gunupur (GIET University)

Time: 3 hrs

PART – A

22BCHPC35002 - Chemical Reaction Engineering-I

(Chemical Engineering)

B. Tech (Fifth Semester - Regular) Examinations, November - 2024

Maximum: 70 Marks

Answer ALL questions (The figures in the right hand margin indicate marks) (2 x 5 = 10 Marks)

Q.1. Answer ALL questions				
a.	Given the reaction $2NO_2 + \frac{1}{2}O_2 = N_2O_5$, what is the relation between the rates of formation and disappearance of the three reaction components?	C01	К1	
b.	On doubling the concentration of reactant, the rate of reaction triples. Find the reaction order.	CO2	К4	
c.	Define pseudo first order reaction.	CO1	К2	
d.	Differentiate batch reactor and continuous reactor.	CO1	К2	
e.	How can you keep the concentration of the reactant high for a single reactant parallel	CO2	КЗ	
	reaction?			

PART – B

examples

(15 x 4 = 60 Marks)

Answer All the questions							Marks	CO #	Blooms Level	
2. a.	The irreversible reaction $A+B=AB$ has been studied kinetically, and the rate of formation of product has been found to be well correlated by the following rate equation							8	CO1	К1
	$\mathbf{r}_{AB} = \mathbf{k} [A]^2 \dots$ is independent of [B].									
	What reaction mechanism is suggested by this rate expression if the chemistry of									
	the reaction suggests that the intermediate consists of an association of reactant									
	molecules and that a chain reaction does not occur?									
b.	b. The data for the first order decomposition of Benzene diazonium chloride to								CO2	КЗ
	Chlorobenzene & nitrogen are as follows.									
	K (Sec -1)	0.00043	0.00103	0.00180	0.00355	0.00717				
	T (K)	313	319	323	328	333	-			
	What is the activation energy & complete rate expression for this reaction? (OR)									
c.	 c. For the following stoichiometry, find the overall order of the reaction A + B = Products Given 							8	CO2	КЗ
	C _A (mol/l	it)	4		1	1				
	C _B (mol/l	it)	1		1		8			
	-r _A (mol/lit.	lit.min) 2 1 4								
d.	Describe ab	out the di	fferent inte	rmediates	used in	chemical re	eaction with	7	CO2	K2

3.a.	Derive the performance equation of the reaction of second order $A + B \rightarrow$ Product having initial concentration C_{A_0} and C_{B_0} of A and B respectively for a	8	CO3	КЗ
b.	constant volume batch reactor. Draw free hand graphs for Conc vs time. Liquid A decomposes by first-order kinetics, and in a batch reactor 50% of A is converted in a 5-minute run. How much longer would it take to reach 75% conversion?	7	CO2	КЗ
	(OR)			
с.	Derive the performance equation for irreversible first order reaction of variable volume batch reactor.	7	CO2	K2
d.	Calculate the first order rate constant for the disappearance of A as per the gas phase reaction $A \rightarrow 1.6$ R, if the volume of the reaction mixture, starting with pure A increases 50% in 4 minutes. The total pressure of the system remains constant at 1.2 atm and the temperature is 25° C.	8	CO2	КЗ
4.a.	Derive the performance equation of ideal batch reactor from material balance expression.	8	CO3	K2
b.	Gaseous reactant A decomposes as follows.	7	CO2	К3
	$A \rightarrow 3R$, $-r_A = 0.6 \text{ min}^{-1}C_A$			
	Find the space time and conversion of A in 50% A-50% inert feed having flow rate 180 lit/min and C_{A_0} =300 mol/lit, to a 1 m ³ mixed flow reactor. (OR)			
c.	A homogeneous gas phase reaction with stoichiometry and the kinetics	8	CO2	К5
	$A \rightarrow S$, $-r_A = kC_A^2$, takes place with 50% conversion in a mixed flow reactor. Find the conversion if this reactor is replaced by another MFR having volume six times the first MFR all remain unchanged.			
d.	Write the advantages, disadvantages and application of mixed flow reactor.	7	CO1	К2
5.a.	Discus about the quantitative treatment of product distribution for unimolecular	7	CO3	КЗ
	type first order reaction $A \rightarrow R \rightarrow S$ in a batch reactor.			
b.	The desired liquid phase reaction $A+B \longrightarrow R+T$,	8	CO3	К3
	$-r_R = -r_T = k 1 C_A^{1.5} C_B^{0.3}$			
	Is accompanied by the unwanted side reaction			
	$A+B \longrightarrow S+U, r_S = r_U = k_2 C_A^{0.5} C_B^{1.8}$			
	From the stand point of favourable product distribution, order the contacting			
	pattern of continuous flow operation, from the most desirable to the least desirable.			
	(OR)			
c.	Derive the expression of C_A , C_R and C_S for quantitative product distribution of an unimolecular type first order reaction $A \rightarrow R \rightarrow S$ in a mixed flow reactor. Evaluate its $C_{R,max}$ and space time for attaining $C_{R,max}$. Draw the concentration- time graph.	12	CO2	К2
d.	What is the importance of product distribution in multiple reactions with respect	3	CO1	КЗ
	to single reaction for designing?			
	End of Paper			