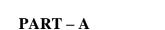
Reg.						
No						

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY, ODISHA, GUNUPUR (GIET UNIVERSITY)

Time: 3 hrs


B. Tech (Third Semester - Regular) Examinations, November – 2024

23BCHPC23003 - Chemical Process Calculation

(Chemical Engineering)

Maximum: 60 Marks

Answer ALL questions (The figures in the right hand margin indicate marks)

(2 x 5 = 10 Marks)

Q.1.	Answer ALL questions	CO #	Blooms Level
a.	Calculate the weight of CaCl ₂ required for making 2 lit 0.2N aq. solutions.	CO2	КЗ
b.	Why is the vapour pressure over a solution of a component with other component less than	CO1	К4
	that of its pure form of liquid?		
c.	Write the objective of bypass in unit operation.	CO1	K1
d.	Identify the limiting reactant with reason in the reaction of 500 g of sulphur reacts with 400	CO3	КЗ
	g of oxygen to produce sulphur dioxide.		
e.	Differentiate heat of mixing and heat of solution.	CO1	K2

PART – B

(10 x 5 = 50 Marks)

Answ	er ALL the questions	Marks	CO #	Blooms Level
2. a.	10 kg of liquid A of specific gravity 1.2 is mixed with 3 kg of liquid B of sp. Gravity of 0.8. Assuming there is no volume change on mixing, what is the	5	CO2	K3
1	specific gravity of the mixture?	_		
b.	Prove that mole fraction = pressure fraction = volume fraction	5	CO1	К2
	(OR)	_		
c.	The flue gas has the following percent composition by volume	5	CO3	K4
	$CO_2=14\%$, $SO_2=0.5\%$, $CO=2\%$, $O_2=2.5\%$ $N_2=81\%$			
	Determine			
	(a) The average molecular weight of the gas mixture(b) The composition of gas in weight percent			
	(b) The composition of gas in weight percent(c) The density of the gas at 320 K and 1.5 bar			
d.	An aqueous solution of NaCl contains 20% NaCl. The density of the solution is	5	CO2	КЗ
u.	1.16 g/ml. 500 ml of water of density 1 g/ml is added to 1 litre of solution. What	J	02	K3
	will be the molarity, normality and molality of the resulting solution?			
3.a.	Write short note on Raoult's law.	5	CO1	К1
			CO2	
b.	The Antoine constants for n-heptane are A=13.8587, b=2911.32 and C= 56.56. P^s s in kPa and t is in K. Calculate	5	02	К4
	(a) The vapour pressure of n-heptane at 325 K			
	(b) The normal boiling point of n-heptane			
	(OR)			
с.	The vapour pressure of acetone at 273 K is 8.52 kPa and that at 353 K is 194.9	5	CO3	К4
0.	kPa. Dry air initially 101.3 kPa and 300K is allowed to get saturated with the	5	000	N-F
	vapours of acetone at constant temperature and volume. Determine			
	(a) The final pressure of the mixture			
	-			

(b) The mole% of acetone in the final mixture Assume the Clausius-Clapeyron equation is applicable to acetone d. Moist air contains 0.025 kg water vapour per cubic metre of mixture at 313K and 5 CO2 К3 103.15 kPa. Calculate the following: (a) The relative saturation (b) The absolute humidity of the air (c) The percent saturation (d) The temperature to which the mixture be heated so that its percent saturation becomes 10%. The vapour pressure of water (in kPa) is approximated by the Antoine equation as $lnP^{S} = 16.262 - \frac{3799.887}{T - 46.854}$ An single effect evaporator is fed with 10000 kg/h of weak liquor containing 15% 4.a. 5 CO2 К3 caustic by weight and is concentrated to get thick liquor containing 40% by weight (NaOH), calculate the (a) kg/h of water evaporated (b) kg/h thick liquor The spent acid from a nitrating process contains 33% H₂SO₄, 36% HNO₃ and 31% 5 CO3 b. K3 water by weight. This acid is to be strengthened by the addition of concentrated sulphuric acid containing 95% H₂SO₄ and concentrated nitric acid containing 78% HNO₃. The strengthened mixed acid is to contain 40% H₂SO₄ and 43% HNO₃. Calculate the quantities of spent and concentrated acids that should be mixed together to yield 1500 kg of the desired mixed acid. (OR)An aqueous solution of Na₂CO₃ contains 15% carbonate by weight. 80% of the CO2 К4 5 c. carbonate is recovered as Na₂CO₃.10H₂O by evaporation of water and subsequent cooling to 278 K. The solubility of Na₂CO₃ at 278 K is 9% (weight). On the basis of 100 kg of solution treated, determine the following: (a) the quantity of crystal formed (b) the amount of water evaporated d. Soap as produced contains 50% moisture on a wet basis. Before it can be pressed CO2 5 Κ4 into cake for sale, the moisture would be reduced to 20%. How many 100g cakes can be pressed from 1000 kg of wet soap? 5.a. Propane is burned with excess air to ensure complete combustion. If 55 kg of CO₂ 5 CO3 К3 and 15 kg of CO are obtained when propane is completely burned with 500 kg air. Determine: (a) The mass of propane burnt in kg (b) The percent excess air b. Ethylene oxide is produced by oxidation of ethylene. 100 kmol of ethylene are 5 CO3 K5 fed to the reactor and the product is found to contain 80 kmol ethylene oxide and 10 kmol CO₂. Calculate (a) The percent conversion of ethylene (b) The percent yield of ethylene oxide (OR)c. The analysis of refinery gas by volume is CO2

6

К3

 $H_2 = 74\%, CH_4 = 13.5\%, C_2H_6 = 7.4\%, C_3H_8 = 3.6\%, n-C_4H_{10} = 1.2\%, n-C_5H_{12} = 0.3\%$

Component	$-\Delta H_c^0(gross), kJ/$	$-\Delta H_c^0(net), kJ/$		
	mol	mol		
CH ₄	890	802		
C_2H_6	1560	1429		
C ₃ H ₈	2219	2043		
$n-C_4H_{10}$	2877	2657		
n-C ₅ H ₁₂	3536	3272		

Data

 ΔH_{f}^{0} of H2O(g) = -242 kJ/mol at 298 K

 ΔH_{f}^{0} of H2O(1) = -286 kJ/mol at 298 K

Specific volume at 298 at 298 K and 101.3 kPa = 24.4 m3/kmol

Calculate GCV, NCV of refinery gas in kJ/mol and kJ/m³.

- d. Calculate NCV at 298 K of a sample of fuel oil having C/H ration 9.33 (weight) 4 CO3 K3 and containing S as 1.3% by weight. GCV298K = 41785 kJ/kg, $\lambda = 2442.5$ kJ
- 6.a. The molal heat capacity of CO is given by $C_p=26.586+7.582\times 10^{-3}\mbox{ -}1.12\times 10^{-6}\mbox{ T}^2$

Where C_p is in kJ/kmol.K and T in K

- (a) Calculate the mean molal heat capacity in temperature range of 500-1000 K.
- (b) CO enters a heat exchanger at a rate of 500 m^3 per hour at STP. Calculate the heat to be supplied to the gas to raise its temperature from 500 to 1000K
- b. Calculate the std heat of formation of ethane gas at 25 0 C using the following data. 4 CO2 K4 Heat of formation of CO₂(g)= -393.5 kJ/mol Heat of formation of H₂O(l)= -285.8 kJ/mol

Heat of combustion of $C_2H_6(g)$ = -1560.7 kJ/mol

(OR)

 c. Obtain the empirical equation for calculating the heat of reaction at any
7 CO2 K4 temperature T (K) for the following reaction: CH₄(g)+ C₂H₆(g) → C₃H₈(g)

Data: Standard heat of reaction at 298 k = -82.66 kJ/mol, $C_p = a + bT + cT^2$, kJ/(mol.K)

Component	a	bx10 ³	C x10 ⁶
CH ₄	19.2494	52.1135	11.973
C ₂ H ₆	4.1261	155.0213	81.5455
C ₃ H ₈	4.2227	306.264	158.6316

Using the same expression, calculate the heat of reaction at 600 °C.

d. Write short note on 'Heat of reaction'.

--- End of Paper ---

3 CO1 K2

6

CO3

КЗ