	v	22	
Α	Υ	2.3	

QP Code: RN23BTECH063 Reg. No

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY, ODISHA, GUNUPUR (GIET UNIVERSITY)

B. Tech (Third Semester - Regular) Examinations, November - 2024

23BEEPC23002 - NETWORK THEORY

(EE/EEE)

Time: 3 hrs Maximum: 60 Marks

	(The figures in the right hand margin indicate marks)					
PART - A		$(2 \times 5 = 10 \text{ Marks})$				
Q.1	. Answer ALL questions	СО	Blooms Level			
a.	State Kirchhoff's current and voltage Law?	CO1	K1			
b.	State the superposition Theorem?	CO1	K1			
c.	Explain the reciprocity condition for a two-port network?	CO1	K2			
d.	What is the purpose of a filter in a network?	CO2	K2			
e.	What is the Laplace Transform of sinbt and cosbt?	CO1	K1			

 $PART - B ag{10 x 5} = 50 Marks$

$(10 \times 3 - 30 \text{ Marks})$				
Answer ALL the questions	Marks	CO#	Blooms Level	
2. a. By using Thevenin's Theorem calculate the current flowing through between terminal A & B? $6\Omega \geqslant 3\Omega \geqslant $	5	CO1	К2	
b. Different between Thevenin's Theorem and Norton's Theorem?	5	CO1	K2	
(OR)				
C. By using superposition Theorem Calculate the voltage 'V' in the given circuit? + 6ν + 0ν	5	CO1	K2	
d. Find the value of load resistance for which the maximum power will be transfer to the circuit? $\begin{array}{c c} & & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$	5	CO1	K2	

		1		
3.a.	A series RLC Circuit has the following parameters values.			
	Resistance- 10 ohm, Inductance- 0.014 H, Capacitance – 100 μF			
	Compute the following			
	1. Resonant Frequency in rad/sec.	5	CO4	K2
	2. Quality Factor of the circuit.			
	3. Band width.			
	4. Lower and upper frequency point of the bandwidth.			
b.	What is the Resonance Frequency and derive the condition for resonance	5	CO3	К3
	Frequency?)	003	KS
	(OR)			
c.	Explain Bandwidth of Series R-L-C circuit and Quality Factor?	5	CO4	K1
d.	Determine the resonant Frequency, Bandwidth and Quality Factor of the series			
	RLC circuit with R= 10Ω , L= 0.1 H, C= 10μ F.	5	CO4	K2
4.a.	i) How does the co-efficient of coupling affected the mutual inductance of two			
	coils?			
	ii) If two coils have self-inductance of L1=4H and L2=9H, and their mutual	5	CO3	K2
	inductance =6H calculate the co-efficient of coupling?			
b.	Find the total inductance from the given two circuits.			
υ.	This the total inductance from the given two circuits.			
	ZH ZH			
	4H	_	CO3	К2
	GH GH SH	5	CU3	KΖ
	L1=10H L2=12H L3=8H L1=6H L2=8H L3=10H			
	(OR)			
c.	State the Laplace transform of an exponential function?	5	CO3	K3
d.	How does inductive reactance change with frequency in a resonance circuit?	5	CO2	K2
5.a.	E 14 7 D		1002	
J.a.	given 2-parameter of the below 2Ω 6Ω			
	$_{4\Omega} \lesssim$	5	CO2	K2
	o			
b.	Find the Y parameter of the			
	given 2-port network? 8Ω			
	Δ 4Ω	5	CO2	K2
	$\lesssim 2\Omega$			
	·			
	(OR)			
c.	[2 1]			
	A function in Laplace domain in given by $F(s) = \left[\frac{2}{s} - \frac{1}{s+3}\right]$ obtain its initial	5	CO3	K2
	value and final value Theorem?			
d.	Explain the types of Filter.	5	CO5	K1
6.a.	State and explain the maximum power transfer theorem.	5	CO1	K2
	·		1	

b.	Calculate the current through 10Ω and voltage drop across it for the circuit shown in fig by using Milliman's Theorem.	5	CO1	К4
	$1 \text{ A} \bigcirc \qquad $			
	(OR)			
c. Derive the Transient Response of series RL-circuit with D.C excitation.		5	CO3	K2
d. Derive the condition for maximum resonant frequency.		5	CO3	K2

--- End of Paper ---