QP Code: RN23BTECH087	Reg. No						AY 23
	110						

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY, ODISHA, GUNUPUR (GIET UNIVERSITY)

B. Tech(Third Semester - Regular) Examinations, November - 2024

23BMEPC23003- Material Science

(Mechanical Engineering)

Time: 3 hrs Maximum: 60 Marks Answer ALL questions (The figures in the right hand margin indicate marks) PART - A $(2 \times 5 = 10 \text{ Marks})$ CO# Blooms Q.1. Answer *ALL* questions Level a. Difference between 'ductile' and 'brittle' materials. CO1 Κ1 b. Explain alloy formation. CO2 Κ1 c. What is the T.T.T. diagram in the context of steel heat treatment? CO3 Κ1 d. Explain the structure of an optical fiber. CO4 Κ1 Define composite material. CO5 Κ1 $PART - B(10 \times 5=50 \text{ Marks})$ Marks CO# Blooms Answer **ALL** the questions Level 2. a. Explain the mechanism of plastic deformation in metals. Discuss the roles of slip 5 CO₁ K2 and twinning. b. Discuss the concept of 'Cold Working' and 'Hot Working' of metals. Explain the 5 CO₁ К3 differences between them. (OR) c. What are homogeneous and heterogeneous nucleation processes in the 5 CO₁ Κ1 solidification of metals? d. Explain the concepts of recovery, recrystallization, and grain growth in metals 5 CO₁ K2 during heat treatment. 3.a. Explain the different types of alloys and the factors that govern solubility in solid CO₂ 5 K2 solutions b. Explain the various types of phase diagrams: Isomorphous, Eutectic, Peritectic, 5 CO₂ K2 Eutectoid, and Peritectoid systems. (OR) c. Explain the iron-cementite (Fe-Fe₃C) phase diagram and its importance in 5 CO₂ K2 understanding steel and cast iron behavior. d. Describe the effect of non-equilibrium cooling on the solidification of alloys, and 5 CO₂ К3 explain the concept of homogenization. 4.a. Describe the microstructural effects of the heat treatment processes of annealing, 5 CO₃ К3 normalizing, hardening, and tempering in steels. How does the alloy composition influence the mechanical properties and CO₃ Κ4 microstructure of high-strength low-alloy (HSLA) steels? (OR) c. Compare the microstructures and typical applications of different types of cast CO₃ 5 K2 irons: gray iron, white iron, ductile iron, and malleable iron.

d.	Explain the concept of plastic deformation in metals, yield point phenomena, CRSS, recovery, recrystallization, and grain growth.	5	CO3	К3
	orige, recovery, recrystamization, and grain growth.			
5.a.	Describe the construction, working, and applications of a Helium-Neon (HeNe)	5	CO4	Κ4
	laser.			
b.	What is the principle behind optical fiber communication, and how does it work?	5	CO4	КЗ
	(OR)			
c.	Compare and contrast thermosetting plastics and thermoplastics with respect to	5	CO4	K2
	their structure, properties, and applications.			
d.	Discuss the types, structure, mechanical properties, and applications of ceramics.	5	CO4	Κ4
6.a.	Explain the classification of composite materials.	5	CO5	КЗ
b.	Discuss the types of reinforcements used in composite materials and their	5	CO5	K2
	characteristics.			
	(OR)			
c.	What are the characteristics of Metal Matrix Composites (MMCs) and how are	5	CO5	К3
	they selected for specific applications?			
d.	What are the types of matrix materials used in Metal Matrix Composites (MMCs)	5	CO5	КЗ
	and how are they selected for various applications?			