Reg.

No

## GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY, ODISHA, GUNUPUR (GIET UNIVERSITY)

# B. Tech (Third Semester - Regular) Examinations, November - 2024

23BCSPC23001 - Introduction to Data Science

(CSE, CSE(DS))

Maximum: 60 Marks

## Answer ALL questions (The figures in the right hand margin indicate marks)

| $(2 \mathbf{x})$ | 5 = | 10 N | Marks) |  |
|------------------|-----|------|--------|--|

| Q.1. | Answer ALL questions                                                                      | CO # | Blooms<br>Level |
|------|-------------------------------------------------------------------------------------------|------|-----------------|
| a.   | Mention any four application fields in which data science can be applied.                 | CO1  | К2              |
| b.   | What is data discretization and why is it important in data analysis?                     | CO2  | К2              |
| c.   | Provide the general form of the equation for simple linear regression and multiple linear | CO3  | К2              |
|      | regression.                                                                               |      |                 |
| d.   | Define NULL hypothesis and Alternative hypothesis. Provide an example for each.           | CO5  | К2              |
| e.   | What is overfitting? How it can be avoided?                                               | CO6  | К2              |

#### PART – B

#### (10 x 5 = 50 Marks)

| Answ  | er ALL the q   | uestions      |               |               |               |               |               | Marks | CO # | Blooms<br>Level |
|-------|----------------|---------------|---------------|---------------|---------------|---------------|---------------|-------|------|-----------------|
| 2. a. | Discuss the    | potential se  | ecurity risks | s associated  | with data b   | reaches in c  | lata science. | 5     | CO1  | K2              |
| b.    | Consider a     | logistics in  | ndustry ma    | nagement s    | system. Ide   | ntify the n   | eed of data   | 5     | CO1  | К2              |
|       | science in     | logistics in  | ndustry ma    | nagement      | system to     | enhance b     | usiness and   |       |      |                 |
|       | managemen      | nt. Also de   | scribe in d   | etail about   | uses of da    | ata science   | in logistics  |       |      |                 |
|       | industry au    | tomation sy   | stem.         |               |               |               |               |       |      |                 |
|       |                |               |               | (OR)          |               |               |               |       |      |                 |
| c.    | Consider a     | fraud detect  | tion system   | in banking    | sector that   | requires to i | implement a   | 5     | CO1  | К2              |
|       | set of proad   | ctive measu   | res to detec  | t and avoid   | fraudulent    | activities a  | nd financial  |       |      |                 |
|       | losses. Illus  | strate the di | ifferent stag | ges of data   | science pro   | oject develo  | pment with    |       |      |                 |
|       | respect to the | he above sco  | enario.       |               |               |               |               |       |      |                 |
| d.    | Describe an    | ny two roles  | s involved i  | n data scier  | nce project   | developmen    | nt with their | 5     | CO1  | К2              |
|       | responsibili   | ities.        |               |               |               |               |               |       |      |                 |
| 3.a.  | Outline the    | steps involv  | ved in hand   | ling categor  | rical data du | ring the pre  | e-processing  | 5     | CO2  | КЗ              |
|       | phase.         |               |               |               |               |               |               |       |      |                 |
| b.    | Consider yo    | our own data  | aset and exp  | lain how to   | calculate th  | e skewness    | and kurtosis  | 5     | CO2  | КЗ              |
|       | values to as   | ssess the dis | tribution of  | the data.     |               |               |               |       |      |                 |
|       |                |               |               | (OR)          |               |               |               |       |      |                 |
| c.    | Define the     | term simple   | linear regr   | ession. Eva   | luate the re  | gression fro  | m the given   | 5     | CO2  | КЗ              |
|       | data and ev    | aluate the st | tandard erro  | or            |               |               |               |       |      |                 |
|       | Х              | 1             | 3             | 10            | 16            | 26            | 36            |       |      |                 |
|       | Y              | 42            | 50            | 75            | 100           | 150           | 200           |       |      |                 |
| d.    | Consider th    | e daily tem   | peratures (in | n °C) for a v | week are as   | follows: 22   | , 25, 23, 28, | 5     | CO2  | КЗ              |
|       | 30, 32, and    | 26. Find the  | e mean, me    | dian and sta  | ndard devia   | ation.        |               |       |      |                 |
| 4.a.  | Explain hove   | w does Box    | plot help to  | o identify ou | utliers. Mer  | tion the ste  | ps to handle  | 5     | CO4  | КЗ              |
|       | outliers.      |               |               |               |               |               |               |       |      |                 |



PART – A

b. Explain what a residual plot is, its purpose, and how it helps in diagnosing the 5 CO4 КЗ performance of a regression model.

(OR)

student studied for 7 hours?

c. A researcher is studying the relationship between the number of hours spent 5 CO4 КЗ studying and the test score of students. The following data is provided:

| Calculate the regression          | Hours Spent (X) | Test Score (Y) |
|-----------------------------------|-----------------|----------------|
| equation to predict the test      | 2               | 55             |
| score based on hours spent        | 3               | 60             |
| studying. What would you          | 5               | 70             |
| predict the test score to be if a | 6               | 75             |
| student studied for 7 hours?      | 8               | 85             |

d. A company is exploring the relationship between the hours of training (X) and the 5 CO4 КЗ employee performance score (Y). After analyzing the data, the company finds that a third-degree polynomial regression fits the data better than a linear regression model. What is the general form of a third-degree polynomial regression model? Explain why a third-degree polynomial might provide a better fit than a linear regression model in this case. 5.a. Explain the concepts of Type I and Type II errors in hypothesis testing. 5 CO5 КЗ b. What do you mean by chi-squared test? The number of scooter accidents per 5 CO5 КЗ month in a certain town was as follows: 12, 8, 20, 2, 14, 10, 15, 6, 9, 4 Use the chi-squared test to determine if these frequencies are in agreement with the belief that accident conditions were the same during this period ( $x_{0.06}^2 = 16.92$ ) (OR) What is a heat map and explain how is it useful in correlation analysis. 5 CO5 c. КЗ following exam d. Consider the scores of а group of students: 5 CO5 КЗ 72,75,78,80,82,85,88,90,92,95. Compute the kurtosis and analyse whether the data shows a peaked or flat distribution relative to a normal distribution 6.a. What are the different classification evaluation metrics? Provide the formula to 5 CO6 К2 calculate it. What is cross-validation, and why is it important in model evaluation? b. 5 CO6 К2 (OR) How does grid search help in finding the optimal hyper-parameters for a machine c. 5 CO6 К2 learning model? Describe the steps involved in performing a grid search. d. Describe how you would use Mean Squared Error (MSE) and Mean Absolute 5 CO6 К2 Error (MAE) to evaluate the performance of a regression model.

--- End of Paper ---