Reg.						
No						

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY, ODISHA, GUNUPUR (GIET UNIVERSITY)

B. Tech (Third Semester - Regular) Examinations, November - 2024

23BCHPC23001 – HEAT TRANSFER

Time: 3 hrs

(Chemical Engineering)

Maximum: 60 Marks

Answer ALL questions (The figures in the right hand margin indicate marks)

 $(2 \times 5 = 10 \text{ Marks})$

(10 x 5=50 Marks)

CO #

Blooms

Level

Marks

Q.1.	Q.1. Answer ALL questions		
a.	Define Fourier's law of heat conduction. What are the assumptions made for Fourier's	CO2	K1
	law of heat conduction?		
b.	Why at the critical thickness of insulation the rate of heat transfer is maximum?	CO3	К4
c.	A hot fluid enters in a DPHE at 15 ^o C and to be cooled to 94 ^o C by a cold fluid which enters	CO1	К2
	at 38°C and heated to 66°C.Shall they be directed in parallel or counter?		
d.	Define Stefan-Boltzmann Law.	CO6	K1
e.	Draw a neat sketch for 1-2 parallel counter flow heat exchangers.	CO5	К2

PART – B

Answer ALL the questions

2. a. Derive the expression for one dimensional steady state heat conduction through a 5 CO1 Κ1 composite cylinder. b. Calculate the rate of heat loss through the vertical walls of a boiler furnace of size 5 CO1 К1 4m by 3 m by 3 m high. The walls are constructed from an inner fire brick wall 25 cm thick of thermal conductivity 0.4 W/mK, a layer of ceramic blanket insulation of thermal conductivity 0.2 W/mK and 8 cm thick, and a steel protective layer of thermal conductivity 55 W/mK and 2 mm thick. The inside temperature of the fire brick layer was measured at 600°C and the temperature of the outside of the insulation 60°C. Also find the interface temperature of layers. (OR) Derive the expression for one dimensional steady state heat conduction through a 5 CO1 c. Κ4 composite sphere. A spherical container of negligible thickness holding a hot fluid at 140°C and d. 5 CO2 К3 having an outer diameter of 0.4 m is insulated with three layers of each 50 mm thick insulation of $k_1 = 0.02$: $k_2 = 0.06$ and $k_3 = 0.16$ W/mK. (Starting from inside). The outside surface temperature is 30° C. Determine (i) the heat loss, and (ii) Interface temperatures of insulating layers. 3.a. Derive Nusselt equation by Dimensional analysis for free convection heat 6 C03 К3 transfer. b. Analyze the following dimensionless number and their importance 4 C02 K2 i. Reynolds Number ii. Prandlt Number iii. Nusselt Number

(OR)

- c. Derive Nusselt equation by Dimensional analysis for forced convection heat 6 C03 K2 transfer.
- Analyse the empirical correlation for long tube in laminar flow and for the for the C03 d. 4 К2 turbulent flow.

4.a.	Water flows at the rate of 65 kg/min through a double pipe counter flow heat exchanger. Water is heated from 50°C to 7°C by an oil flowing through the tube. The specific heat of the oil is 1.780 kJ/kg.K. The oil enters at 115°C and leaves at 70°C. The overall heat transfer co-efficient is 340 W/m ² K.calcualte the following 1. Heat exchanger area 2. Rate of heat transfer					C04	КЗ
b.	When LMTD correction factor used in heat exchanger calculation. (OR)					C04	K1
c.	A counter flow double pipe heat exchanger using superheated steam is used to heat water at the rate of 10500 kg/hr. The steam enters the heat exchanger at 180° C and leaves at 130° C. The inlet and exit temperature of water are 30° C and 80° C respectively. If the overall heat transfer coefficient from steam to water is 814 W/m^2 K, calculate the heat transfer area. What would be the increase in area if the fluid flow were parallel?					C04	К2
d.	What are the various types of b		-		2	C04	К2
5.a.	Do the Heating area calculation for		-		2	CO5	К2
b.	Analyse the material and energy balance for Multiple effect forward feed arrangement					CO5	К4
	evaporation process.						
		(OR)					
c.	Differentiate between capacity an	d economy of an eva	aporator.		2	CO5	K1
d.	An evaporator is to be fed with 5000 kg/hr of solution containing 10% solute by weight. The feed at 40° C is to be concentrated to a solution containing 40% by weight of the solute under an absolute pressure of 1.03 kg/cm ² . Steam is available at an absolute pressure of 1.03 kg/cm ² . Saturation temperature of the steam is 134°C. The overall heat transfer coefficient is 1500 kcal/hrm ²⁰ C. Calculate Heat transfer area that should be provided.					CO5	К4
	Temperature Enthalpy, kcal/kg						
	⁻⁰ C 40	Vapour 613.5	Liquid 40.5				
	100	639.2	100.0				
	134	651.4	134.4				
6 a	Differentiate between black an		151.1		4	CO6	К1
			1 1 1 1 2 2 1	1 /			
b.	 A furnace radiation at 2000K. Treating it as a black body radiation, calculate the (i)Monochromatic radiant flux density at 1 μm wavelength. (ii)Wavelength at which emission is maximum and the corresponding radiant flux density (iii)Total emissive power and (iv)Wavelength λ such that emission from 0 to λ is equal to the emission from λ to ∞. 				6	CO6	К3
c.	Derive the expression for the rate of heat transfer by radiation within infinite					CO6	К1
d.	Long parallel plates.				4 6	CO6	K3

--- End of Paper ---