QP Code: RN23BTECH039	Reg.						AY 23

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY, ODISHA, GUNUPUR (GIET UNIVERSITY)

PART - A

B. Tech (Third Semester - Regular) Examinations, November - 2024

23BBSBS23001 – Engineering Mathematics-III

(CHE, CIVIL, EE, EEE, MECH)

 $(2 \times 5 = 10 \text{ Marks})$

Time: 3 hrs Maximum: 60 Marks

Answer ALL questions

(The figures in the right-hand margin indicate marks)

Q.1.	Answer ALL questions	CO#	Blooms Level					
a.	Define (i) Analytic function (ii)	CO1	K1					
b.	State Cauchy's integral formula.	CO2	K1					
c.	Form the Newton's divided diffe	CO3	K2					
		X	2	5	10			
		Y	5	29	109			
d.	Write the formula for Simpson's	CO4	K1					
e.	What is the range of correlation of	coeffic	cient?				CO5	K1

PART - B (10 x 5 = 50 Marks)

Answ	Answer ALL the questions					
2. a.	Verify that the function $u(x,y) = 3x^2y + 2x^2 - y^3 - 2y^2$ is harmonic, and find its harmonic conjugate $v(x,y)$.	5	CO1	Level K2		
b.	Find the bilinear transformation which maps the points $z_1 = -1$, $z_2 = 0$, $z_3 = 1$ into the points $\omega_1 = 0$, $\omega_2 = i$, $\omega_3 = 3i$ respectively.	5	CO1	K1		
	(OR)					
c.	Check whether the function $f(z) = \frac{1}{z}$ is analytic or not.	5	CO1	K2		
d.	Determine the region in the ω -plane in which the rectangle bounded by the	5	CO1	К2		
	lines $x = 0$, $y = 0$, $x = 2$, and $y = 1$ is mapped under the transformation $\omega =$					
	z + 2 + 3i.					
3.a.	Expand $\frac{1}{(z-1)(z-2)}$ in Laurent's series valid for $1 < z < 2$.	5	CO2	K2		
b.	Evaluate $\int_C \frac{2z-1}{z(z+1)(z-3)} dz$ where C is the circle $ z = 2$ using Cauchy residue	5	CO3	K2		
	theorem.					
	(OR)					
c.	Using Cauchy's integral formula, calculate $\int_C \frac{z^2+1}{z(2z+1)} dz$, where C is $ z =1$.	5	CO2	K2		
d.	Evaluate $\int_0^{2\pi} \frac{d\theta}{5-4\sin\theta}$ over a circle $ z =1$.	5	CO3	K2		
4.a.	Find the value of y at $x = 2.65$ for the data given below.	5	CO3	K1		
	x -1 0 1 2 3					
	y -21 6 15 12 3					
b.	For the following data, find the cubic function of x using Newton's divided	5	CO4	K1		

difference formula and hence find f(2).

х	0	1	2	5			
f(x)	2	3	12	147			
(OR)							

^{c.} Evaluate $\int_0^5 \frac{dx}{4x+5}$ using Simpson's $\frac{1}{3}$ rule with n=10 and hence find the value of $\log_e 5$.

5 CO3 K1

CO4

Κ1

5

d. Find y'(x) given

х	0	1	2	3	4
f(x)	1	1	15	40	85

5.a. Use Lagrange's interpolation formula to fit a polynomial to the following data

-12

5	CO4	K1		

and hence find the value of y when x = 2.

b. Find a real root of -4x + cosx + 2 = 0 correct to four decimal places by 5 CO3 K2 Newton Raphson method assuming $x_0 = 0.5$.

12

(OR)

c. Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using Trapezoidal rule with h=2. Hence, find the value of π .

d. Using Taylor series method, find y(0.1) given $\frac{dy}{dx} = x^2 - y$, y(0) = 1 correct 5 CO5 K1 to 4 decimal places.

6.a. Out of the two lines of regression, which is the regression line of *X* on *Y*?

X + 2y = 5, 2X + 3Y = 8. Also, compute (i) the mean values of *X* and *Y* and (ii) the correlation coefficient.

b. Apply Runge-Kutta method to find y(0.1) given $\frac{dy}{dx} = -2x - y$, y(0) = 5 CO5 K1 -1 with h = 0.1.

(OR)

c. Find the regression equations for the following data.

5	CO6	K2

-						
X	10	14	18	22	26	30
Y	18	12	24	6	30	36

d. Using modified Euler's method, find y(0.2) and y(0.4) given $y' = x^2 + 5$ CO5 K1 $y^2, y(0) = 1$ by taking h = 0.2.

--- End of Paper ---