B. Tech (Third Semester - Regular) Examinations, November – 2024 23BBSBS23001– Engineering Mathematics-III

(Electronics and Communication Engineering)

Maximum: 60 Marks

Time: 3 hrs

PART – A

Answer ALL questions (The figures in the right hand margin indicate marks)

(2 x 5 =	= 10 Marks)
(=	1 0 10 10 1 1 1 1 1 1 1 1 1 1

- Q.1. Answer *ALL* questions a. Determine whether the function $2xy + i(x^2 - y^2)$ is analytic or not. b. Find the zeros of $f(z) = \frac{z^2 + 1}{1 - z^2}$. CO# Blooms Level CO1 K1 CO2 K1
- c. Find the divided difference of $f(x) = x^3 + x + 2$ for the arguments 1,3,6 and 11. CO3 K2

d. In a particular manufacturing process, it is found that, on the average 1% of the items is CO4 K2 defective. What is the probability that the fifth item inspected is the first defective item?

Consider a Markov chain with state {0,1} and transition probability matrix $P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. Is

the state 0 periodic? If so what is the period?

PART – B

e.

Answer ALL the questions

1 1115 W	Answer ALL the questions			Level
2. a.	If $f(z) = e^{z}$ then show that u and v are harmonic functions. $[z = x + iy]$ and	5	CO1	K3
	f(z) = u + iv].			
b.	Determine the region D of the <i>w</i> -plane into which the triangular region D enclosed	5	CO1	К4
	by the lines $x = 0$, $y = 0$ and $x + y = 1$ is transformed under the transformation $w=2z$.			
	(OR)			
с.	Find the bilinear transformation that maps the points $z = 0, -1, i$ into the points	5	CO1	КЗ
	$w = i, 0, \infty$ respectively.			
d.	Prove that an analytic function with constant modulus is constant.	5	CO1	K4
3.a.		5	CO2	КЗ
	Using Cauchy's integral formula, evaluate $\int_C \frac{z+1}{(z-3)(z-1)} dz$ where C is the circle	-		-
	z = 2.			
b.	Find the Leument's series expansion of the function z^{-1} would in the	5	CO2	K4
	Find the Laurent's series expansion of the function $\frac{z-1}{(z+2)(z+3)}$, valid in the			
	region $2 < z < 3$.			
	(OR)			
c.	Find the Taylor's gaming for $\frac{1}{1}$ shout $z = 1$ up to first four terms	5	CO2	КЗ
	Find the Taylor's series for $\frac{1}{z-2}$ about $z = 1$ up to first four terms.			

d. Evaluate using Cauchy's Residue theorem, $\int_{C} \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$ where 5 CO2 K4 C: |z| = 3.

(10 x 5 = 50 Marks)

CO#

Marks

CO5

К2

Blooms

4.a.	Find the real root of $x^3 - 2x - 5 = 0$ using Newton Raphson's method.[up to three decimal places]			КЗ
b.	Using Lagrange's interpolation, find $f(3)$ from the following data.	5	CO3	К3
0	(OR)	-	<u> </u>	2
c.	Find the first derivative of $(x)^{\frac{1}{3}}$ at $x = 50$ and $x = 56$ given the table below:	5	CO3	КЗ
	x 50 51 52 53 54 55 56			
	$y = (x)^{\frac{1}{3}} 3.6840 3.7084 3.7325 3.7563 3.7798 3.8030 3.8259 $			
d.	Solve for a positive root of $x^3 - 4x + 1 = 0$ by Regula Falsi method.[up to three	5	CO3	К3
	decimal places]			
5.a.	The incidence of occupational disease in an industry is such that the workers have	5	CO4	K4
	a 20% chance of suffering from it. What is the probability that out of six workers 4 or more will contract disease?			
b.	If X is uniformly distributed over (0,10), find i) $P(X < 4)$ ii) $P(X > 6)$	5	CO4	К4
	iii) P (2 < X < 5)			
	(OR)			
c.	By the method of least squares find the best fitting straight line to the data given	5	CO4	КЗ
	below: $x \ 5 \ 10 \ 15 \ 20 \ 25$			
	y 15 19 23 26 30			
d.	A company keeps records of accidents. During a recent safety review, a random	5	CO4	К4
	sample of 60 accidents was selected and classified by the day of the week on which			
	they occurred.			
	DayMonTuesWedThursFriNumber of accidents81291417			
	Test whether there is any evidence that accidents are more likely on some days			
	than others.			
6.a.	Prove that the random process $X(t) = A \cos(\omega t + \theta)$, where A, ω are constants	5	CO5	K4
	and θ is uniformly distributed over $(0,2\pi)$ is a wide sense stationary process.	_		
b.	Suppose that customers arrive at a bank according to a Poisson process with a mean rate of 3 per minute, find the probability that during a time interval of 2 minute	5	CO5	К4
	(i) more than 4 customers arrive (ii) exactly 4 customers arrive			
	(OR)			
c.	The transition probability matrix of a Markov chain $\{X_n\}$, $n = 1, 2,$ having 3	5	CO5	КЗ
	$\begin{bmatrix} 0.1 & 0.5 & 0.4 \end{bmatrix}$			
	states 1,2 and 3 is $P = \begin{bmatrix} 0.6 & 0.2 & 0.2 \\ 0.3 & 0.4 & 0.3 \end{bmatrix}$ and the initial distribution is			
_	$P^{(0)} = (0.7 0.2 0.1).$ Find $P = (X_3 = 2, X_2 = 3, X_1 = 3, X_0 = 2).$			
d.	If {X(t)} is a wide-sense stationary process with autocorrelation $R(\tau) = Ae^{-\alpha \tau }$,	5	CO5	К4
	determine the second-order moment of the random variable $X(8) - X(5)$.			
	End of Paper			

Page **2** of **2**