Time: 3 hrs

Reg.					
No					

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY, ODISHA, GUNUPUR (GIET UNIVERSITY)

B. Tech (Third Semester - Regular) Examinations, November - 2024

23BCSBS23001 - Discrete Mathematics

(CSE)

Maximum: 60 Marks

Answer ALL questions							
(The figures in the right hand margin indicate marks)							
$\mathbf{PART} - \mathbf{A} \tag{2 x 5} = 1$			10 Marks)				
Q.1	. Answer ALL questions	CO#	Blooms Level				
a.	Define Quantifiers with an example.	CO1	К2				
b.	If $A = (1,3)$ and $B = (2,4,5)$, then how many relations can be formed from A to B? Write	CO2	КЗ				
	the relations which have two ordered pairs among them.						
c.	Define a Boolean function with suitable examples.	CO3	КЗ				
d.	Prove that any group of order p^2 where p is a prime, is abelian.	CO4	K1				
e.	Define coloring. Find the chromatic number	CO5	К2				
	for the following graph.						

PART – B

Answer ALL the questions

				Level
2. a.	Prove that $(p \land q) \Leftrightarrow p$ is logical equivalence to $p \Rightarrow q$.	5	CO1	K2
b.	Use mathematical induction to show that $1 + 3^2 + 5^2 + 7^2 + \dots + (2n - 2n)^2$	5	CO1	K2
	$1)^{2} = \frac{1}{3} n (2n - 1)(2n + 1).$			

(OR)

c.	Determine whether the following formula is tautology, contradiction, or	5	CO1	КЗ
	neither. $(p \Rightarrow \overline{q}) \land (p \land q)$			
d.	Let $P(x)$ be the predicate "x is divisible by 3" where x is an integer. Determine	5	CO1	K1
	the truth value of $\forall x P(x)$ and $\exists x P(x)$.			
3.a.	Show that the sequence $\{a_n\}$ is a solution of the recurrence relation	5	CO2	К4
	$a_n = a_{n-1} + 2 a_{n-2} + 2n - 9$ if $a_n = 5 (-1)^n - n + 2$.			
b.	In a survey of 540 college students, it is found that 128 like carrot, 188 like beetroot, 116 like cauliflower, 52 like both carrot and beetroot, 56 like both carrot and cauliflower, 44 like both beetroot and cauliflower and 28 like all three vegetables. How many of the 540 students do not like any of these	5	CO2	КЗ
	vegetables.			
	(OR)			
c.	Let <i>R</i> be a binary relation on the set of all positive integer and such that $R = \{(a, b) a = \sqrt{b}\}$. Is <i>R</i> Reflexive? Symmetric? Anti-symmetric? Transitive? an	5	CO2	K2

 $\{(a, b)|a = \sqrt{b}\}$. Is *R* Kenexive? Symmetric? And Equivalence relation? A partial ordering relation?

(10 x 5 = 50 Marks)

CO#

Blooms

Marks

d.	A large software development company employs 100 computer programmers. Of them, 45 are proficient in Java, 30 in C++, 20 in Python, six in C++ and Java, one in Java and Python, five in C++ and Python, and just one programmer is proficient in all three languages above. Determine the number of computer programmers that are not proficient in any of these three	5	CO2	K2
4.a.	 languages. Consider the Boolean algebra D₂₁₀ (D-Divisor). i) List its elements and draw its diagram. ii) Find the set A of atoms. 	5	CO3	К4
	iii)Find two sub algebras with eight elements.			
b.	Prove that every chain is a distributive lattice.	5	CO3	К4
	(OR)	-		
c.	In any Boolean algebra, show that $a = b$ if and only if $a\overline{b} + \overline{a}b = 0$.	5	CO3	КЗ
d.	Prove that every distributive lattice is modular.	5	CO3	К4
5.a.	Consider the group $G = \{1, 2, 3, 4, 5, 6, 7\}$ under multiplication modulo 8.	5	CO4	K1
J.u.	i) Give the Cayley Table of G ii) Find 2^{-1} , 3^{-1} , 6^{-1}	J	204	KI
	iii)Find the order of the subgroups generated by 2 and 3.			
	iv)Is (Z_n, \bigotimes) a group for any <i>n</i> ? Justify your answer?			
b.	Determine whether the set $S = \{1, 2, 3, 6, 12, 24\}$, with the binary operation $a *$	5	CO4	K2
	b = LCM(a, b) is a semigroup, a monoid or neither.			
	(OR)			
c.	Show that the set $S = \{1,5,7,11\}$ is a group with respect to multiplication modulo 12.	5	CO4	К1
d.	Let <i>H</i> and <i>K</i> be subgroups of a group <i>G</i> . Prove that $H \cap K$ is subgroup of <i>G</i> .	5	CO4	КЗ
6.a.	Answer all the questions: Justify the answer.	5	CO5	K2
	 i) Determine whether the following sequence is graphic. 5, 4, 3, 2, 1. ii) Find the degree sequence of K₅. 			
	iii)How many vertices does a regular graph of degree four with 10 edges have?	_		
b.	Prove that in a tree, there exist a unique path between pair of vertices. (OR)	5	CO5	КЗ
c.	Write the adjacent and incident matrices of the following graph.	5	CO5	K2
	a b c f e d			
d.	Derive Euler's formula for planar graph.	5	CO5	КЗ
		5		

--- End of Paper ---