Reg.						AY 24
No						

B. Tech (First Semester - Regular) Examinations, December – 2024 23BBSBS11001– Engineering Mathematics - I

(Common to all branches except Biotech)

Maximum: 60 Marks

Answer ALL questions (The figures in the right hand margin indicate marks)

 $(2 \times 5 = 10 \text{ Marks})$

(10 x 5 = 50 Marks)

CO #

Blooms

Marks

Q.1. Answer ALL questions				
a.	What is the relation between Eigen vector a matrix A and its similar matrix \hat{A} corresponding to same Eigen value λ .	CO1	K1	
b.	Find out the value of $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}$ if $z = sin^{-1}(\frac{y}{x})$	CO1	K1	
c.	Reduce the differential equation $3y^2y' + 2xy^3 = 2x$ into linear differential equation	CO2	K1	
d.	Solve $x^2 y'' - 3xy' + 4y = 0$	CO2	K1	
e.	State Dirichlet's conditions.	CO1	K1	

PART – B

Time: 3 hrs

PART – A

Answer ALL the questions

Answ	er ALL the questions		00 "	Level
2. a.	Determine the spectrum and Eigen vectors of the matrix $A = \begin{bmatrix} -10 & 10 & -15 \\ 10 & 5 & -30 \\ -5 & -10 & 0 \end{bmatrix}$	10	CO4	K2
	and also find the algebraic and geometric multiplicity of the Eigen values.			
	(OR)			
b.	Reduce the quadratic form $2x^2 + 2y^2 + 2z^2 - 2xy - 2yz - 2zx$ to canonical	10	CO3	К2
	form through an orthogonal transformation. Also Find rank, index	10	05	κz
3.a.	If $u = tan^{-1}\left(\frac{x^3+y^3}{x-y}\right)$, $x \neq y$, then prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = sin2u$	7	CO3	К2
b.	Discuss the Maxima and Minima at each stationary point of the function	3	CO3	К2
	$f(x, y) = x^3 + y^3 - 3x - 12y + 20$	5	005	NΖ
	(OR)			
c.	Expand $f(x, y) = e^x \cos y$ as a Taylor's series in powers of x and y.	5	CO2	К2
d.	Use the method of Lagrange multipliers to find the minimum value of the	5	CO3	К2
	function $f(x, y, z) = x + y + z$ subject to the constraint $x^2 + y^2 + z^2 = 1$	5	005	NΖ
4.a.	Solve $xy' = y + x^4 Cos^2(y/x)$, $y(1) = 0$	5	CO3	К2
b.	Solve $2xydx = (x^2 + y^2)dy$, $y(1) = 2$	5	CO2	К2
	(OR)			
c.	Solve $ydx + [y + tan(x + y)]dy = 0$.	5	CO2	К2
d.	Solve $(sec^2y)y' + 2x tany = 2x$	5	CO2	К2
5.a.	Solve by method of undetermined coefficients $3y'' + 10y' + 3y = 9x + 5\cos x$	7	CO3	К2
b.	Solve by operator method $(D^2 - 4D + 4)y = e^{3x}$	3	CO2	К2
	(OP)			

(OR)

c.	Solve by method of variation of parameters $(D^2 + 6D + 9)y = \frac{16e^{-3x}}{x^2 + 1}$	7	CO3	К2
d.	Determine the Particular integral of $(D^2 - 4D + 4)y = e^{2x}sinx$	3	CO3	К2
6.a.	Find Fourier series of the periodic function $f(x) = x$, $(0 < x < 2\pi)$	6	CO4	К2
b.	Find the Half range cosine series of $f(x) = x^2$, $(0 < x < 1)$	4	CO4	К2
	(OR)			
c.	Find the Fourier series of the periodic function $f(x) = x \sin x$, $(-\pi < x < \pi)$	10	CO4	К2

--- End of Paper ---