Reg.						AY23/AY
No						

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

B.Tech. (First Semester) Regular Examinations, December – 2024 23BBSBS10003 – Engineering Chemistry

(Common to all Branches)

Maximum: 60 Marks

Answer ALL questions (The figures in the right hand margin indicate marks)

(2 x 5 = 10 Marks)

Q.1. Answer ALL questions			Blooms Level
a.	Show that Sin 2x is not an Eigen Function of operator d/dx but it is an Eigen function of d^2/dx^2 . Calculate the Eigen Value.	CO2	K2
b.	Define temporary and permanent hardness. Name the soluble salts responsible for the formation of scale.	CO4	K1
c.	Define aeration corrosion.	CO1	К1
d.	Calculate the EMF of the cell Zn/Zn ⁺² //Ag ⁺ /Ag at 298 K given that $E^{o}_{Zn/Zn}^{2+} = 0.76V$ and $E^{o}_{Ag^{+}/Ag} = 0.8V$.	CO3	К3
e.	Write the synthesis of PTFE & its two uses.	CO2	К2

PART - B

(10 x 5 = 50 Marks)

Answer ALL the questions			CO #	Blooms Level	
2. a.	Derive time dependent Schrodinger wave equation.			К2	
b.	Calculate the energy associated with an electron at 3 rd energy level of path length 10 nm.	5	CO4	КЗ	
(OR)					
c.	Draw the Molecular orbital diagram, magnetic properties and bond order of B_2 molecules.	5	CO2	K2	
d.	Difference between bonding and antibonding molecular orbital.	5	CO1	K1	
3.a.	Describe demineralization process.	5	CO3	КЗ	
b.	Difference between hot lime and cold lime soda process.	5	CO2	К2	
	(OR)				
c.	Write note on Scale and sludge.	5	CO1	K1	
d.	A sample of water on analysis has been found to contain following in ppm:				
	$Ca(HCO_3)_2 = 4.86$ Mg(HCO_3)_2 = 5.84 $CaSO_4 = 6.8$ MgSO_4 = 8.4 CaCl_2 = 11	5	CO5	КЗ	
	$MgCl_2=9.5$. Calculate the temporary and permanent hardness.				
4.a.	Define Nernst equation.	5	CO2	К2	
b.	Calculate the EMF of the cell Zn/Zn ⁺² (0.1 M)//Cu ⁺² (0.01 M)/Cu at 298 K given that $E^{o}_{Zn/Zn}^{+2} = 0.76 v$ and $E^{o}_{Cu}^{+2}/Cu = 0.34 v$.	5	CO6	КЗ	
	(OR)				
c.	Describe Galvanic cell.	5	CO2	К2	
d.	Explain the working, construction, principle and application of Fuel cell.	5	CO4	К3	
5.a.	Write notes on Pilling bed worth rule.	5	CO1	K1	
b.	Define corrosion and Explain wet corrosion with examples.	5	CO2	К2	

PART – A

24

 $(10 \times 0 - 20 \text{ Mulks})$

(OR)

c.	Differentiate between chemical corrosion and electrochemical corrosion.	5	CO2	K2
d.	Define tinning and Galvanization. Why tinning is better than Galvanization?	5	CO1	К1
6.a.	Explain the synthesis of Bakelite. Mention its physical properties and uses.	5	CO3	К3
b.	Explain addition & condensation polymer with suitable example.	5	CO2	K2
	(OR)			
c.	Write the polymerization, properties and uses of Nylon-6,6, and PMMA.	5	CO4	КЗ
d.	ify the polymer on the basis of tacticity or configuration, and molecular force		CO2	К2
	of attraction.			
	End of Paper			