Reg.						AY23/AY24
No						

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

B.Tech. (First Semester) Examinations, December - 2024

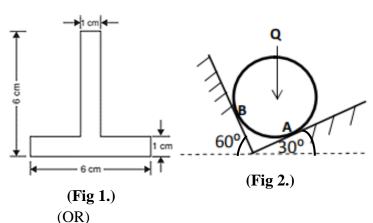
23BBSES10002 - Elements of Mechanical Engineering

(Common to all branches)

Time: 3 hrs Maximum: 60 Marks

Answer ALL questions (The figures in the right hand margin indicate marks)

PART - A (2 x 5 = 10 Marks)


Q.1.	Q.1. Answer <i>ALL</i> questions		Blooms
			Level
a.	Define Lami's theorem.	CO1	K1
b.	Distinguish centroid and center of gravity.	CO2	K1
c.	State Zeroth law of Thermodynamics.	CO4	K1
d.	Define limiting friction.	CO3	K1
e.	Define pressure and write four units.	CO6	K1

 $PART - B ag{10 x 5} = 50 Marks$

Answer ALL the questions

2. a. Determine the magnitude and direction of the resultant force of the two forces 4 CO1 K2 having magnitude 9 N and 12 N acting at a point, if the angle between them is 30°.

b. Calculate the centroid of the given composite shape. (**Fig 1.**)

- c. A ball of weight Q= 53.4 N rest in a right-angle trough as shown in above figure 5 CO1 K2 (Fig.2). Determine reactions at A & B if all surface is perfectly smooth.
 d. A quarter of circle area is removed from square. Find out the centroid of remaining 5 CO2 K2 area. The radius of the circle is same as the side of square.
- 3.a. A body of weight 450 N is pulled up on an inclined plane, by a force of 300 N. The inclination angle of the plane is 30° to the horizontal and the force applied is parallel to the plane. Determine coefficient of friction.
 - b. Explain Perfect, Imperfect, Plane and Space Truss.

4 CO1 K1

CO₃

K2

6

Marks

6

CO#

CO₂

Blooms

К3

(OR)

c.	Calculate the forces in all the members of the truss.	7	CO1	К3
d.	Write the different laws of friction.	3	CO3	K1
4.a.	Define thermodynamic system. Explain the different thermodynamic systems with	2+3	CO4	K1
	examples.			
b.	4 kg of gas undergo an isothermal process at pressure 2 bar and temperature 300 K. Determine the work done by the gas if the volume of the increased by 2 times. Take R for the gas as 287 J/kgK. (OR)	5	CO4	K2
c.	Write two similarities between heat transfer and work transfer. Explain the different modes of heat transfer with examples.	1+4	CO4	K1
d.	A mass of 8 kg gas expands within a flexible container so that the p-v relationship is in the form of $pV^{1.4} = const.$ The initial pressure is 1000kPa and initial volume is $1m^3$. The final pressure is 5kPa. The internal energy decreases by 320kJ, find the work transfer and heat transfer.	5	CO4	K2
5.a.	The enthalpy and velocity of the fluid at the inlet to the nozzle are 3000 kJ/kg and 60 m/s. At the discharge, the enthalpy is 2762 kJ/kg. The nozzle is horizontal and	5	CO5	К3
b.	there is negligible heat loss from it. Calculate the velocity at the exit of the nozzle. Explain the important components of steam power plant. (OR)	5	CO5	K2
c.	Write Kelvin Planck Statement and Clauisus statement. A reversible heat engine receives heat from a thermal reservoir at 870K and rejects 50kW of heat to a sink at 290K. If the engine output is 85kW, make calculations for engine efficiency and heat supplied by the reservoir.	3+3	CO5	K3
d.	(i) Difference between Turbine and Compressor.(ii) Difference between Nozzle and Diffuser.	4	CO5	K1
6.a.	Define surface tension.	2+3	CO6	K2
	A liquid of density 900 kg/m³ rises to a height of 7 mm in a capillary tube of 2 mm internal diameter. If the angle of contact of the liquid in the glass is 25°, find the surface tension of the liquid. g=9.8 m/s².			
b.	Write the advantages, disadvantages and applications of Industrial Robots.	2+1+2	CO6	K1
	(OR)			
c.	Convert the following readings of pressure to kPa, assuming that the barometer reads 760 mmHg: (i) 90 cm Hg gauge (ii) 40 cm Hg vacuum	5	CO6	K2
d.	Write short notes on Flexible Manufacturing System.	5	CO6	K2