Reg.						AY 24
No						

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

M.Tech. (First Semester) Regular Examinations, February – 2025

24MPCHPC11001- Mathematical and Statistical Methods in Chemical Engineering

(Chemical)

	(Chemical)				
		Maximu	Maximum: 60 Marks		
	Answer ALL questions				
(The figures in the right hand margin indicate marks)				l-a)	
$PART - A (2 \times 5 =$				10 Marks)	
Q.1. Answer <i>ALL</i> questions				Blooms Level	
a.	Prove that if a subsequence of a Cauchy sequence converges to L, then the full seque converges to L.	nce also	CO1	K2	
b.	You apply the Gauss-Seidel method to solve a linear system having an iteration mate $(D+L)-1U$ with spectral radius $\rho(T)=0.998$. Using the fact that $log10(0.998)=-$ roughly how many iterations are needed to reduce the error in the initial guess by a $10-6$?	0:0009,	CO2	K2	
c.	Write Adam's -Bashforth predictor and corrector formulae.		CO2	K1	
d.	Write on Levenberg-Marquardt Algorithm.		CO4	K1	
e.	Name the function represented by the Taylor series $1-x^2/2+x^4/24-x^6-720+$ at a	= 0.	CO3	K1	
$PART - B ag{10 x 5} =$					
Ans	wer ALL the questions	Marks	CO#	Blooms Level	
2. a	. Find for each m, the solution space of the linear system				
	3x + 2y + mz = 0	10	CO1	K1	
	mx - y + 4z = 0	10	COI	KI	
	2x + y + 3z = 0				
	(OR)				
b.	Suppose $p(t) = 3t - t^2$ and $q(t) = 3 + 2t^2$. For p and q in P ₂ , define				
	(p, q) = p(-1)q(-1) + p(0)q(0) + p(1)q(1).	10	CO1	КЗ	
	Compute (p, q). Also Compute the orthogonal projection of q onto the subspace spanned by p.	3			
3.a		_			
<i>5.</i> a	Seidel method.				
	$10x_1 + x_2 + 2x_3 = 44$	10	CO1	K2	
	$2x_1 + 10x_2 + x_3 = 51$				
	$x_1 + 2x_2 + 10x_3 = 61$				
	(OR)				
b	. Solve by Gauss-Jacobi method, the following system:				
	28x+4y-z=32	10	CO2	K2	
	X+3y+10z=24	10	CO2	K2	
	2x+17y+4z=35				
4.a	. Use Newton's backward difference formula to construct an interpolating				
	polynomial of degree 3 for the data:	10	CO4	νa	
	f(-0.75) = -0.0718125, $f(-0.5) = -0.02475$, $f(-0.25) = -0.3349375$ and $f(0.75) = -0.0718125$) 10	CO4	K2	

=1.101. Hence find f (- 1/3).

(OR)

b.	Apply Newton's method to determine a real root of equation:			
	$f(x) = x^3 - 5x + 1 = 0.$	10	CO4	К3
	Take the initial approximation as $x0=0.5$.			
5.a.	Find a real root of $\cos x = 3x - 1$ by Wegstein's method correct to three decimal	10	CO3	K2
	places.			
	(OR)			
b.	Obtain the values of x and y that satisfy the following 2 non-linear algebraic			
	equations: $f(x, y) = e^x + xy - 1 = 0$	10	CO3	K2
	$G(x,y) = \sin xy + x + y - 1 = 0$			
6.a.	Integrate the ordinary differential equation dy/dx=x+y			
	Using Runge-Kutta 4th order method. The initial condition is at x=0, y=0.	10	CO5	К3
	determine the value of y at $x=0.2$. The analytical solution is given by $y=ex-x-1$.			
	(OR)			
b.	Using Milne's method, compute y (0.8) given that	10	605	1/2
	$dy/dx=1+y^2$, $y(0)=1$, $y(0.2)=0.2027$, $y(0.4)=0.4228$, $y(0.6)=0.6841$.	10	CO5	К3
	End of Paper			