QP Code:R251B038	Reg.					
	No					

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

PART - A

M.Tech. (First Semester) Regular Examinations, February – 2025 **24MVLPE11021 –Real-time Signal Processing Systems** ECE(VLSI Design)

AY 24

 $(2 \times 5 = 10 \text{ Marks})$

Time: 3 hrs Maximum: 60 Marks

Answer ALL questions (The figures in the right hand margin indicate marks)

ГА	ARI - A	$(2 \times 3 =$	IU Mia	rks)
Q.1. A	Answer ALL questions		CO#	Blooms Level
a. I	How is the Fast Fourier Transform useful in representing a signal?		CO4	K2
b. V	What are the real-life applications of FFT?		CO1	K1
c. V	What is the design process of an Infinite Impulse Response (IIR) filter?		CO2	K2
d. V	What is radix-2 FFT?		CO1	K2
e I	How does windowing affect the frequency response of a signal?		CO3	K1
PAI	RT - B	$(10 \times 5 =$	50 Ma	arks)
Answ	er ALL the questions	Marks	CO#	Blooms Level
2. a.	Explain the impact of spectral leakage in Fourier analysis, detailing its causes effects, and the role of windowing techniques in reducing its influence of frequency representation.		CO1	К3
b.	Discuss the principles of multirate signal processing, covering techniques such a interpolation, decimation, and polyphase decomposition, and their benefits i optimizing signal processing efficiency. (OR)		CO1	К3
c.	Compare FIR and IIR filters, emphasizing their mathematical models, stabilit considerations, frequency response characteristics, and applications acros various digital signal processing fields.	•	CO1	К4
d.	Describe the structural design of the Direct Form II implementation in digita filters, analyzing its computational benefits and memory efficiency.	ll 5	CO1	K2
3.a.	Elaborate on the significance of the Nyquist-Shannon sampling theorem explaining its mathematical basis, its role in preventing aliasing, and it importance in modern signal processing systems.		CO2	К3
b.	Analyze the differences between the Discrete Fourier Transform (DFT) and the Fast Fourier Transform (FFT), focusing on computational efficiency, real-world applications, and their behaviour in large data processing. (OR)		CO2	К2
c.	Explain how the windowing method is used in digital filter design, comparin different window functions, their influence on filter characteristics, and the trade offs in performance.	_	CO2	К3
d.	Discuss the role of adaptive filtering in digital signal processing, covering LMS and RLS algorithms, their advantages, and their importance in real-time signal applications.		CO2	К4
4.a.	Provide a detailed analysis of finite word length effects in digital filters examining quantization errors, coefficient rounding, and their consequences in fine detailed analysis of finite word length effects in digital filters.		CO3	K2

fixed-point and floating-point processing systems.

b.	Compare the design methodologies of cascade and parallel structures in digital signal processing, evaluating their stability, efficiency, and implementation strategies.	5	CO3	К3
	(OR)			
c.	Explain why the Fast Fourier Transform (FFT) is termed "fast," highlighting its algorithmic structure, computational improvements, and its significance in real-time applications.	5	CO3	K2
d.	Differentiate between decimation and interpolation in DSP, explaining their mathematical basis, real-world implementations, and how they modify signal characteristics.	5	CO3	К3
5.a.	Discuss the trade-offs between time-domain and frequency-domain representations of signals, detailing their respective strengths, limitations, and practical applications.	5	CO4	К4
b.	Provide an in-depth explanation of the relationship between the Discrete Fourier Transform (DFT) and the Z-transform, emphasizing their connections and roles in analyzing signals and systems.	5	CO4	К3
	(OR)			
	· ,			
c.	Examine the concept of signal reconstruction from sampled data, detailing interpolation methods and their role in minimizing distortion and maintaining signal fidelity in digital communication systems.	5	CO4	K1
d.	·			K2
6.a.	Discuss the advantages and limitations of the Fast Fourier Transform (FFT) in signal analysis, covering its computational complexity, efficiency, and constraints.	5	CO2	К3
b.	Examine the concept of zero-padding in FFT, exploring how it enhances spectral resolution and contributes to improved frequency domain interpolation. (OR)	5	CO1	КЗ
c.	Explain the nature of quantization error in digital signal processing, discussing its origins, impact on signal accuracy, mathematical modeling, and techniques to mitigate its effects.	5	CO1	K1
d.	Describe the role of convolution in digital signal processing, explaining its mathematical foundation, implementation in discrete-time systems, and significance in linear time-invariant system analysis.	5	CO3	КЗ

--- End of Paper ---