Reg.						İ
No						

AY 24

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

M.Tech. (First Semester) Regular Examinations, February – 2025 **24MSEPC11002 - Elastic Stability and Behaviour of Metal Structures**(Structural Engineering)

Time: 3 hrs Maximum: 60 Marks

Answer ALL questions (The figures in the right hand margin indicate marks)

	(The figures in the right hand margin indicate marks)					
PART - A			$(2 \times 5 = 10 \text{ Marks})$			
Q.1.	Answer ALL questions		CO#	Blooms Level		
a.	Write the approaches to stability analysis.		CO1	K1		
	Draw & label the mode shape of buckling.		CO3	K1		
	Explain perfect column.		CO1	K2		
d.	Define Euler load.		CO1	K2		
e.	Write the types of torsion.		CO2	K2		
PART – B			$(10 \times 5 = 50 \text{ Marks})$			
Answer ALL the questions			CO#	Blooms Level		
2. a.	Find the elastic buckling load of cantilever column using fourth order differential equation of beam column.	5	CO2	К3		
b.	State the necessary and sufficient conditions for general collapse condition of a structure	5	CO2	K2		
	(OR)					
c.	Develop the differential equation for maximum deflection and maximum bending moment in case of beam column with central load	5	CO1	K2		
d.	Assess differential equation for beam column	5	CO1	K3		
3.a.	Find out the critical stress and critical moment for an I beam subjected to couples at end.	5	CO3	K2		
b.	A thin walled bar of open cross section is subjected to couples at the end. Derive the expression for warping displacement (OR)	5	CO2	K2		
c.	Find the ultimate load for propped cantilever beam of span '1' subjected to UDL of W/m	5	CO3	К3		
d.	Calculate the shape factor of circular cross section.	5	CO3	K2		
4.a.	Write short notes on Stresses in plastic analysis	5	CO3	K2		
b.	Write short notes on Assumption in plastic analysis (OR)	5	CO3	К3		
c.	A T-section consists of a flange 150x10 mm and a web of 140x10 mm. The section modulus of the T-section is 54600mm ³ This section is used as a simply supported beam of 4m span and carries a UDL of 25kN/m on the whole span. Determine the shape factor of the beam and also calculate the collapse load for the beam. Assume yield stress as 250 MPa	5	CO3	K2		
d.	Determine the shape factor for the rectangular and circular section	5	CO3	K3		

5.a.	Explain "Lateral buckling" in beams and performance of the beam subjected	5	CO2	K3		
	to lateral buckling.					
b.	Analyze the main difference between torsional and flexural buckling with	5	CO1	K4		
	appropriate examples					
	(OR)					
c.	Write a short notes on torsional buckling and also explain pure torsion of thin	5	CO1	K4		
	walled bars of open cross section					
d.	Derive the critical load of cantilever columns	5	CO1	K4		
6.a.	State the necessary and sufficient conditions for general collapse condition of	5	CO1	K3		
	a structure.					
b.	Explain ideal column with examples.	5	CO1	K4		
	(OR)					
c.	Write short notes on Pure torsion.	5	CO3	K4		
d.	Write short notes on Buckling by flexure.	5	CO3	K2		
End of Paper						