QP Code: R251B041	Reg.						AY 24

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

coordinate system.

d. Explain basic coding structures in group technology?

M.Tech. (First Semester) Regular Examinations, February - 2025

24MMTPE11021 - Computer Integrated Manufacturing

(Manufacturing Technology)

	(Manufacturing Technology)						
Tim	Time: 3 hrs		Maximum: 60 Marks				
	Answer ALL questions						
	(The figures in the right hand margin indicate marks)						
PART – A				$(2 \times 5 = 10 \text{ Marks})$			
Q.1.	Answer ALL questions		CO#	Blooms Level			
a.	Define concurrent Engineering.		CO1	K1			
b.	State the two basic component of CMM?		CO2	K1			
c.	List the types of Mechanical Grippers?		CO3	K1			
d.	Classify sensors used in robots?		CO5	K3			
e.	Distinguish between a dedicated FMS and random order FMS?		CO4	K4			
PA	ART - B	(10 x 5	= 50 M	arks)			
Answer ALL the questions				Blooms Level			
2. a.	Explain CIM Hardware and CIM Software.	5	CO1	K2			
b.	Describe "Computer Aided Manufacturing"	5	CO1	K2			
	(OR)						
c.	Describe the benefits of CIM.	5	CO1	K2			
d.	Explain various elements of an automated system with schematic diagram.	5	CO1	K2			
3.a.	Discuss about Coordinate measuring machine (CMM).	5	CO2	K2			
b.	State different applications of CMM.	5	CO2	K1			
	(OR)						
c.	Describe Automated Storage Retrieval System (ASRS).	5	CO4	K2			
d.	Explain the various parts of a robot with neat sketch	5	CO3	K 1			
4.a.	Differentiate between a flexible manufacturing cell and a flexible manufacturing system?	5	CO5	K2			
	Define AGV? Discuss about different types of AGV with its application. (OR)	5	CO4	K1			
b.	Explain some ground rules that must be followed in formulating an APT geometry.	5	CO4	K2			
C.	State different layouts in FMS? Discuss about all the layouts with appropriate	5	CO5	K2			
5.a.	diagram. State and describe different material handling systems used in FMS.	5	CO5	K4			
b.		5	CO4	K3			
0.	(OR)	J		110			
c.	Discuss quantitative analysis of FMS based on bottleneck model for the calculation	10	CO4	K2			
	of production rate, number of work stations, etc., by considering an example.						
6.a.	State the issues in Planning and Design stages of FMS.	5	CO4	K1			
b.	Explain Computer Aided Process Planning (CAPP) to plan processes (OR)	5	CO6	K2			
c.		5	CO3	K3			

5

CO₆

K2