Reg.					
No					

AY 24

Maximum: 60 Marks

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

M.Tech. (First Semester) Regular Examinations, February - 2025

24MMDPE11011 - Fatigue, Creep and Fracture

(Manufacturing Technology/ Machine Design)

Answer ALL questions
(The figures in the right hand margin indicate marks)

	(The figures in the right hand margin indicate marks)					
PART - A				$(2 \times 5 = 10 \text{ Marks})$		
Q.1. A	Answer ALL questions		CO#	Blooms Level		
	in σ – N Curve show endurance strength for finite life and write down the expressind out it.	sion to	CO1	K1		
b. I	Differentiate between Goodman and Soderberg curves?		CO2	K2		
c. I	Explain the phenomenon of creep in metals.		CO3	K2		
d. I	How does fracture stress and mode of fracture vary with specimen thickness?		CO4	K2		
e. I	Explain the miner's concept of cumulative fatigue damage.		CO5	K2		
PART – B		(10 x 5	$(10 \times 5 = 50 \text{ Marks})$			
Answ	ver ALL the questions	Marks	CO#	Blooms Level		
2. a.	Describe the different factors to be considered while designing machine parts to avoid fatigue failure.	5	CO1	K1		
b.	Draw and describe different types of fatigue loading and stress reversal. (OR)	5	CO1	K2		
c.	A machine component is subjected to a flexural stress which fluctuates between +300MN/m² and -150 MN/m². Determine the value of minimum ultimate strength according to: i) Gerber relation ii) Modified Goodman relation iii) Soderberg relation	10	CO1	K2		
3.a.	Draw and describe different types of fatigue loading and stress reversal.	5	CO2	K2		
b.	Describe the methods of reducing stress concentration.	5	CO2	K2		
	(OR)					
c.	Determine the thickness of a 120 mm wide uniform plate for safe continuous operation if the plate is to be subjected to a tensile load that has a maximum value of 250 kN and a minimum value of 100 kN. The properties of the plate material are as follows: Endurance limit stress = 225 MPa, and Yield point stress = 300 MPa.	10	CO2	К3		
	The factor of safety based on yield point may be taken as 1.5.					
4.a.	Explain the mechanism of creep deformation.	5	CO3	K2		
b.	Explain briefly Primary secondary and territory creep. (OR)	5	CO3	K2		
c.	Derive the expression showing the ratio of creep bending stress and elastic	10	CO3	К3		
C.	bending stress (creep stress ratio) considering creep in bending.	10	203	113		
5.a.	Describe the three modes of fracture with appropriate sketches	5	CO4	K2		
b.	Derive an expression for the stress of crack propagation.	5	CO4	K2		

c.	Explain Griffith theory of brittle fracture.		CO4	K2
d.	Derive the Griffith equation for fracture stress in a plain stress and plain strain	5	CO4	K3
	condition.			
6.a.	State and explain cumulative damage theory .	5	CO5	K2
b.	Discuss the various mechanical and metallurgical methods for improvement of	5	CO5	K2
	fatigue strength in metal?			
	(OR)			
c.	A plate with a center crack of 20 mm is subjected to a tensile stress of 200 MPa.	5	CO6	K3
	If the fracture toughness of the material is $K_IC = 60 \text{ MPa/m}$, determine the			
	critical crack length at which failure occurs.			
d.	Distinguish between LEFM AND EPFM	5	CO6	K2
	End of Paper			