Reg.					
No					

AY 24

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

M.Tech. (First Semester) Regular Examinations, February – 2025 **24MTEPC11002 – Conductive and Radiative Heat Transfer** (HPTE)

ime: 3 hrs Maximum: 60 Marks

Answer ALL questions (The figures in the right hand margin indicate marks)

P	ART – A	(2 x 5	= 10 Ma	rks)
Q.1. Answer <i>ALL</i> questions			CO#	Blooms Level
a.	Describe Fourier's law of conduction.		CO1	K1
b.	Define orthotropic solids.		CO2	K1
c.	Define fins (or) extended surfaces.		CO3	K 1
d.	Define Fin efficiency and Fin effectiveness.		CO4	K1
e.	Write the differential equation governing the heat transfer in fins.		CO6	K 1
PART – B		$(10 \times 5 = 50 \text{ Marks})$		
Ansv	wer ALL the questions	Marks	CO#	Blooms Level
2. a	. Explain in brief about the semi-infinite solid.	5	CO1	K3
b	Define isotropic and anisotropic solids? Give few differences between them. (OR)	5	CO1	K2
С	An aluminium rod and a copper rod of equal length 2.0 m and cross-sectional area 2 cm ² are welded together in series. One end is kept at a temperature of 10 °C and the other at 30 °C. Calculate the amount of heat taken out per second from the hot end. (Thermal conductivity of aluminium is 200 W/m °C and of copper is 390 W/m °C).	10	CO2	К3
3.a	· · · · · · · · · · · · · · · · · · ·	5	CO1	К3
b	An infinitely long pin fin, attached to an isothermal hot surface, transfers heat at a steady rate of Q_1 , to the ambient air. If the thermal conductivity of the fin material is doubled, while keeping everything else constant, the rate of steady-state heat transfer from the fin becomes Q_2 . Describe the ratio Q_2/Q_1 ? (OR)	5	CO3	K2
c	A steel ball of diameter 60 mm is initially in thermal equilibrium at 1030°C in a furnace. It is suddenly removed from the furnace and cooled in ambient air at 30°C , with convective heat transfer coefficient $h = 20 \text{ W/m}^2\text{K}$. The thermophysical properties of steel are: density $\rho = 7800 \text{ kg/m}^3$, conductivity $k = 40 \text{ W/mK}$ and specific heat $c = 600 \text{ J/kgK}$. Describe the time required in seconds to cool the steel ball in the air from 1030°C to 430°C ?	10	CO4	K3
4.a	The heat loss from a fin is 6 W. The effectiveness and efficiency of the fin are 3 and 0.75, respectively. Describe the heat loss (in W) from the fin, keeping the entire fin surface at base temperature?	5	CO3	K2

b.	A 3 cm long, 2 mm x 2 mm rectangular cross-section aluminium fin $[k = 237]$	5	CO3	K3	
	W/m°c] is attached to a surface. If the fin efficiency is 65%, Describe the				
	effectiveness of this single fin?				
	(OR)				
c.	Calculate the following for an industrial furnace in the form of a black body and emitting radiation at 2500°C	10	CO4	K3	
	Monochromatic emissive power at $1.2\Box m$ wave length.				
	(i)Total emissive power,				
	(ii)The total emissive power of the furnace if it is assumed as a real surface				
	having emissivity equal to 0.9.				
5.a.	A body takes 4 minutes to cool from 100°C to 70°C. If the room temperature is	5	CO5	K3	
	15°C, what will be the time taken to cool from 70°C to 40°C?				
b.	For an opaque plane surface the radiosity, irradiation and emissive power are	5	CO4	K3	
	respectively 16, 24 and 12 W/m ² . Determine the emissivity of surface.				
	(OR)				
c.	In a condenser of a power plant, the steam condenses at a temperature of 60°C.	5	CO3	K4	
	The cooling water enters at 30°C and leaves at 45°C. Describe the Logarithmic				
	Mean Temperature Difference (LMTD) of the condenser.				
d.	Consider two infinitely long thin concentric tubes of circular cross section. If D_1 and D_2 are the diameters of the inner and outer tubes respectively, then Describe	5	CO5	K3	
	the view factor F_{22} ?				
6.a.	Prove Kirchhoff's law of thermal radiation.	5	CO6	K2	
b.	Derive relation for heat exchange between infinite parallel planes.	5	CO6	K2	
	(OR)				
c.	A black body at 3000 K emits radiation Calculate the following	10	CO6	K3	
	(i) Wave length at which emission is maximum				
	(ii) Maximum emissive power				
	(iii) Total emissive power,				
End of Paper					