2 ~ ~					
keg.					
0.					
. T					
NΛ					
10					

AY 24

Maximum: 60 Marks

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

M.Tech. (First Semester) Regular Examinations, February – 2025

24MVLPC11001 - Semiconductor Devices

ECE (VLSI Design)

Answer ALL questions (The figures in the right hand margin indicate marks)

P	ART – A	$(2 \times 5 = 10 \text{ Marks})$			
Q.1. Answer <i>ALL</i> questions			CO#	Blooms Level	
a. Write on zero-dimensional, one-dimensional, two-dimensional, and three-dimensional			CO1	K1	
b.	defects in a semiconductor? Provide examples. Difference between a lattice and a crystal in solid-state physics.		CO2	K2	
c.	Define the snapback breakdown mechanism in semiconductor devices.		CO3	K2	
d.	Write the meaning of a heterojunction in semiconductor physics.		CO4	K1	
e.	Write a short note on semiconductor wafers and doping techniques.		CO2	K2	
PA	ART – B	$(10 \times 5 = 50 \text{ Marks})$			
Ansv	ver ALL the questions	Marks	CO#	Blooms Level	
2. a.	Recall the fundamental concept of a primitive cell in crystallography? Explain its role in defining crystal structures and unit cells.	5	CO1	K2	
b.		r 5	CO1	К3	
c.	Explain the IV characteristics of a PN junction diode. Describe its working principle, operating modes, and common applications.	5 5	CO1	K1	
d.	Compare forward bias and reverse bias in semiconductor devices. How do they influence charge carrier movement and diode operation?	5	CO1	К3	
3.a.	Describe the formation of a metal-semiconductor junction and classify its types based on their electrical characteristics. Provide examples of their applications.	5	CO2	K2	
b.	Differ P-type and N-type semiconductor junction. Discuss their charge carriers doping mechanisms, and impact on electronic devices. (OR)	' 5	CO2	K4	
c.		5	CO2	K4	
d.	Write on SPICE model, and how does it assist in semiconductor circui simulation. Discuss its relevance in modern VLSI design.	t 5	CO2	К3	
4.a.	Compare the Ebers-Moll model and the Gummel-Poon model used in bipolar junction transistor (BJT) modeling. What are their differences and practical uses	5	CO3	K2	
b.	Explain the Schottky barrier mechanism. How is it formed, what are its characteristics, and where is it commonly applied? (OR)	5	CO3	К3	
c.	Define base narrowing in semiconductor transistors. How does it affect device	5	CO3	K2	

performance and efficiency?

d.	What is the snapback breakdown mechanism in semiconductor devices? Under what conditions does it occur, and what impact does it have on reliability?			К3
5.a.	Describe the working principle of a MOS (Metal-Oxide-Semiconductor)			
	capacitor. Explain its capacitance-voltage characteristics and its importance in IC	5	CO4	Κ4
	design.			
b.	Analyze the IV curve characteristics of ohmic contacts in semiconductor devices.	5	CO4	К3
	Why are they essential for ensuring reliable current conduction?	J	CO4	K3
	(OR)			
c.	Compare and contrast P-type and N-type semiconductor junctions, discussing	5	CO4	K1
	their charge transport properties, doping processes, and practical applications.	J	CO4	ΝI
d.	Illustrate the structure of a HEMT (High Electron Mobility Transistor) and	5	CO4	К2
	discuss why it is the preferred choice for high-speed and RF applications.	5	CO4	ΝZ
6.a.	Classify the different types of metal-semiconductor junctions based on their	5	CO2	К3
	electrical behavior. Provide real-world applications for each type.	J	002	113
b.	Examine the snapback breakdown mechanism in semiconductor devices. What			
	factors contribute to its occurrence, and what techniques can be used to mitigate	5	CO1	К3
	its effects?			
	(OR)			
c.	Provide a detailed overview of the Gummel-Poon model. Discuss its	5	CO1	К1
	mathematical formulation and how it is used in semiconductor device modeling.			
d.	Discuss the role of Schottky barriers in semiconductor devices. How do they	5	CO3	К3
	enhance rectifiers, high-speed switching, and power applications?			
	End of Paper			