_					
Reg.					
IXCE.					
. 0					
N. T					
NIA					
INO					

AY 24

CO#

Blooms

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

O 1 Answer ALL questions

M.Tech. (First Semester) Regular Examinations, February - 2025

24MVLPC11002 - Digital IC Design

ECE(VLSI Design)

Time: 3 hrs Maximum: 60 Marks

Answer ALL questions (The figures in the right hand margin indicate marks)

PART - A (2 x 5 = 10 Marks)

Q.1. Answer <i>ALL</i> questions						
a.	a. What are the major challenges associated with dynamic logic design?					
b.	b. How does a clocked flip-flop differ from a latch in terms of operation and functionality?					
c. What is the difference between the data path and control path in a processor?				K1		
d.						
e						
DADE D						
$PART - B ag{10 x 5} =$						
Ans	wer ALL the questions	Marks	CO#	Blooms Level		
2. a	. Explain the structure and functionality of the following circuits:					
	(i) Data path circuit	5	CO1	K2		
	(ii) Any one type of adder circuit					
b	. Describe the working principle, architecture, and operational impact of an SRAM	5	CO1	К3		
	cell on memory performance.					
	(OR)					
С		_				
	electrical behavior, threshold voltage differences, and applications in analog and	5	CO1	K1		
.1	digital circuits.					
d		5	CO1	К3		
3.a	emphasizing design steps and layout constraints. What are ratioed circuits and dynamic CMOS logic configurations? Discuss their					
J.a	advantages, disadvantages, and real-world applications.	5	CO2	K2		
b						
Ü	significance in MOS capacitor behaviour.	5	CO2	K4		
	(OR)					
c		_				
	clocking schemes, power consumption, and high-speed digital design.	5	CO2	K4		
d	. Compare and contrast different types of adder circuits used in digital design, such	F	CO2	K2		
	as the Ripple Carry Adder, Carry Look ahead Adder, and Booth Adder.	5	CO2	К3		
4.a	. Describe the structure, operation, and benefits of a Booth multiplier in digital	5	CO3	K2		
	arithmetic computations.	3	COS	ΝZ		
b	, ,	5	CO3	К3		
	brief	•				
	(OR)					

c.	Explain the significance of differential signalling in high-speed communication systems and how it improves signal integrity.	5	CO3	K2
d.	Describe the role of substrate biasing in semiconductor devices, explaining its impact on threshold voltage and device efficiency.	5	CO3	КЗ
5.a.	Explain the working principle of a pass transistor logic circuit, comparing its advantages and limitations with traditional CMOS logic.	5	CO4	K4
b.	Analyze the 6-transistor (6T) SRAM cell, explaining its configuration, stability, and read/write operations in memory circuits.	5	CO4	КЗ
	(OR)			
c.	Discuss the impact of sequencing techniques in dynamic circuit design, focusing on timing, clock skew, and power efficiency in high-performance circuits.	5	CO4	K1
d.	Explain the concept of charge sharing in dynamic logic circuits, detailing its impact on circuit stability and possible mitigation techniques.	5	CO4	K2
6.a.	Describe the concept of leakage current in MOSFETs, analyzing its sources, impact on low-power design, and techniques to minimize leakage in modern VLSI circuits.	5	CO2	К3
b.	Compare a latch and a flip-flop in terms of functionality, timing characteristics, and their role in sequential circuits.	5	CO1	К3
	(OR)			
c.	Evaluate the advantages and disadvantages of latches in electronic circuits, considering factors such as power efficiency, speed, and area consumption.	5	CO1	K1
d.	Explain the significance of Booth multiplication in digital systems. How does its structure contribute to computational efficiency?	5	CO3	КЗ

--- End of Paper ---