_					
?ρσ					
ics.					
. T					
NΩ					
NO					

AY 24

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

4.a.

processing applications.

M.Tech. (First Semester) Regular Examinations, February - 2025

24MVLPE11011 - Analog IC Design

ECE(VLSI Design)

Maximum: 60 Marks
Answer ALL questions

Answer ALL questions								
	(The figures in the right hand margin indicate marks)							
$PART - A (2 \times 5 =$				10 Marks)				
Q.1.	Answer ALL questions		CO#	Blooms Level				
a.	What is the slew rate of an operational amplifier (Op-Amp)?		CO3	K1				
b.	What are the different types of feedback used in op-amps?		CO2	K1				
c.	Why do op-amps fail at high frequencies?		CO3	K2				
d.	What is the Miller effect, and how does it affect amplifier performance?		CO1	K1				
e	What are the key operating principles and characteristics of a common-source amp	olifier?	CO4	K2				
$PART - B ag{10 x 5} =$		= 50 Marks)						
Ansv	ver ALL the questions	Marks	CO#	Blooms Level				
2. a.	Discuss the role of feedback topology in operational amplifiers, highlighting it significance in improving gain stability, performance, and overall circui behavior.		CO1	К3				
b.	their functional contrasts, advantages, drawbacks, and usage in both analog and digital applications.	_	CO1	К3				
	(OR)							
c.	Analyze the concept of Common-Mode Rejection Ratio (CMRR) in op-amps explaining its importance in suppressing unwanted signal components and improving differential amplifier accuracy.		CO1	K4				
d.	Differentiate between Common-Source (CS) and Common-Gate (CG) amplifiers focusing on their voltage gain characteristics, impedance properties, and primary applications.		CO1	К2				
3.a.			CO2	К3				
b.		t 5	CO2	K2				
c.			CO2	К3				
d.	Provide an in-depth analysis of MOSFET I/V characteristics, explaining the voltage-current relationships in cutoff, triode, and saturation regions, and discussing essential MOS device attributes.		CO2	K4				

5

CO3

Κ2

Explain the significance of trans-impedance amplifiers in MOS-based circuits,

detailing their role in current-to-voltage conversion, optical sensors, and signal

b.	Compare one-stage and two-stage operational amplifiers in terms of design complexity, stability, power efficiency, and suitability for various circuit applications.	5	CO3	К3
	(OR)			
c.	Describe the purpose and function of current mirrors in amplifier circuits, focusing on their role in biasing and maintaining a stable current supply.	5	CO3	K2
d.	Evaluate the trade-offs in high-speed operational amplifiers, discussing how power efficiency, speed, and gain are balanced using techniques like compensation, biasing, and layout enhancements.	5	CO3	К3
5.a.	Explain the influence of IC layout design on analog circuits, exploring how parasitics, noise coupling, and device matching affect the overall circuit performance.	5	CO4	K4
b.	Explain the working mechanism of the Wilson Current Mirror, highlighting its structure, operational principles, advantages, and typical applications in analog circuit design.	5	CO4	К3
	(OR)			
c.	Discuss the contrast between Source-Insensitive Biasing (SIB) and Temperature-			
C.	Insensitive Biasing (TIB), emphasizing their respective benefits, limitations, and effects on amplifier stability.	5	CO4	K1
d.	Provide a detailed explanation of the Cascode Stage, describing its structural			
	design, working principle, and advantages in achieving higher gain, extended bandwidth, and increased output impedance.	5	CO4	K2
6.a.	Explain how various types of feedback (negative and positive) impact operational amplifier stability, gain control, and circuit response.	5	CO2	К3
b.	Identify and discuss the key sources of noise in operational amplifiers, along with strategies such as filtering, shielding, and optimized layout design to minimize	5	CO1	К3
	unwanted noise.	3	CO1	11.5
	(OR)			
c.	Elaborate on multistage amplifiers, discussing their importance in signal amplification, noise reduction, bandwidth improvement, and key design considerations.	5	CO1	K1
d.	Analyze the impact of the Miller effect in amplifier design, explaining how it affects capacitance, bandwidth, and stability, along with methods to counteract its drawbacks.	5	CO3	К3
	uraw oueks.			

--- End of Paper ---