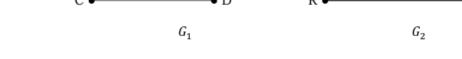
GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

AR 24

Ph.D. (First Semester) Examinations, December - 2024

Reg. No

23SPPEMT1012 - Graph Theory


(Mathematics)

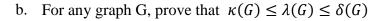
The figures in the right hand margin indicate marks.

Answer ANY FIVE Questions

А

- 1.a. State and prove Hand shaking theorem. Also prove that the number of vertices with 8 odd degree in a simple graph is even.
 - b. Verify whether the following two graphs are isomorphic or not.

2.a. Define product and composition operations on graphs.


 u_1

 u_2

(i) Find the product graph of the following graphs G_1 and G_2 .

 v_1

Find the composition graph of the following graphs G_1 and G_2 . (ii)

 G_1

Write the Prim's algorithm to find the minimal spanning tree. Use it to find the 10 3.a. minimal spanning tree for the following graph

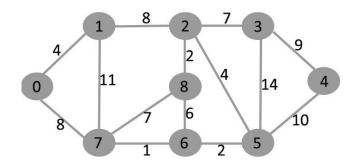
 v_2

 G_2

 v_3

8

6


Time: 3 hrs

Maximum: 70 Marks

(14 x 5 = 70 Marks)

6

Marks

b.	Prove that every tree is a bipartite graph. Also, state that which trees are complete bipartite graphs?		
4.a.	Prove that a graph is planar if and only if it has no subgraphs homeomorphic to K_5 or $K_{3,3,3}$.		8
b.	Prove that every planar graph is 5-colorable.		6
5.a.	Prove that the following statements are equivalent:		14
	(i)	G is a line graph	
	(ii)	The lines of G can be partitioned into complete subgraphs in such a way that no point lies in more than two of the subgraphs.	
	(iii)	G does not have $K_{1,3}$ as an induced subgraph, amd if two odd triangles have a common line then the subgraph induced by their points is K_4 .	
	(iv)	None of the nine graphs ia n induced subgraph of G.	
6.a.	A graph is the line graph of a tree if and only if it is a connected block graph in which each cut point is on exactly two blocks.		8
b.	Prove that for a complete graph with 'p' vertices, the genus is greater than or equal to $\frac{(p-3)(p-4)}{12}$		6
7.a.	Prove that a graph is bicolorable if and only if it is bipartite.		8
b.	For any graph G, prove that $\chi(G) \le 1 + \delta(G)$		6
8.a	Explain how a job sequencing problem can be solved using digraphs.		

*** End of Paper ***