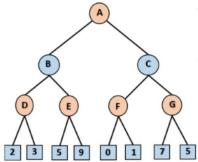
Reg. No

QP Code: RN23MCA027


GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

M.C.A (Third Semester) Regular Examinations, November – 2024

MCA23304 - Artificial Intelligence (MCA)

Time: 3hrs Maximum: 60 Marks

Time: 3hrs		Maximum: 60 Marks					
(The figures in the right hand margin indicate marks) $PART-A \hspace{1.5cm} (2 \ x \ 5 = 10 \ Marks)$							
Q.1. Answer ALL questions			CO#	Blooms Level			
a. N	Mention and define the components of state space search.		CO1	K1			
b. E	chlist two differences between A* and AO* search algorithm.		CO2	K2			
c. E	Explain the issues in knowledge representation?		CO3	К3			
d. Differentiate between propositional and first-order inference.			CO4	K2			
e. D	Describe the process of classification in pattern recognition.		CO5	K5			
PART – B		(10 x5=50 Marks)					
Answer ALL questions		Marks	CO#	Blooms Level			
2. a.	Formulate the Water Jug problem in terms of states, actions, rules and goals, and describe the steps to solve it using DFS. (Jug A $-$ 4L, jug B $-$ 3L). Initial state-(0,0), Goal state-(2,0).	6	CO1	К3			
Kb.	Explain the working of any four Uninformed search strategies with a single example. (OR)	4	CO2	K4			
c.	Explain missionaries and cannibals' problem with appropriate state space description. Draw the solution graph using DFS. (3M3C1B)	6	CO1	K4			
d.	Discuss the Hill Climbing Algorithm using a neat diagram. Describe the limitations of it.	4	CO2	K5			
3.a.	What is the AO* algorithm? Calculate the revised cost of the start node 'S' using the AO* algorithm. 7 A 12 B 5 F G 7	5	CO2	К6			
b.	(H) 2 What do you mean by an Agent? Explain the types of agents with neat diagram.	5	CO1	К2			
	(OR)						
c.	Explain the process of Alpha-Beta Pruning in the context of a game tree and find the optimal path for below tree.	5	CO2	К4			

- d. List the possible moves in the Monkey-Banana Problem and draw a state-space 5 CO1 K3 graph to represent the solution.
- 4.a. Given the Bayesian belief network for a burglary system, find the probability that the alarm has sounded but neither a burglary nor an earthquake has occurred and both john and merry called.

Burglary P(B) .001 Earthquake P(E) .002	4	CO3
B E P(A B,E) T T .95 T F .94 F T .29 F F D.001		
A P(J A) A P(M A) T .90 F .05 MaryCalls T .70 F .01		

b. What is the probability that John calls?

(OR)

- c. Provided the given Knowledge base:
 - 1. John likes all kinds of food.
 - 2. Apples and vegetables are food.
 - 3. Anything anyone eats and not killed is called food.
 - 4. Bill eats peanuts and still alive.
 - 5. Sue eats everything Bill eats.

Represent the knowledge base in first-order logic.

d. Prove that John likes peanuts via Resolution graph.

6 CO4

CO3

CO4

6

4

К5

K5

K2

Κ4

- 5.a. What does the main components of a semantic network represent. Represent 5 CO3 K2 the following sentences into a semantic network:
 - 1. Marcus was a man.
 - 2. Marcus was a Pompeian.
 - 3. All Pompeian were Romans.
 - 4. Caesar was a ruler.
 - 5. Marcus tried to assassinate Caesar.
 - 6. All men are persons.
 - b. Explain the working of Artificial Neural Networks (ANNs) with a detailed 5 CO5 K3 diagram. Discuss how they mimic the human brain's functionality.

(OR)

- c. Enlist and explain the components used for writing a script in AI and create a 5 CO3 K5 script for a scenario where someone goes to the bank to withdraw money
- d. What is pattern recognition? Explain the steps involved in the classification 5 CO5 K4 process with an example.
- 6.a. Represent the following statements in predicate logic form using the 5 CO4 K3 appropriate quantifier.
 - 1. "Not all students like both mathematics and science."
 - 2. "Every student in the class likes at least one book."

	3. "All birds can fly except penguins."			
b.	Short notes:	5	CO5	K2
	1. Contract net protocol			
	2. Natural language processing			
	(OR)			
c.	Solve the given cryptarithmetic problem MATH+MYTH=HARD, and mention the basic rules and constraints of solving it?	5	CO1	K2
d.	Short notes on:	5	CO4	КЗ
	 Decision trees Reinforcement learning 			
	2. Remotechent learning			

--- End of Paper ---