					AY 24

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

Reg.

M.C.A. (First Semester) Regular Examinations, January - 2025

MCA23102 - Operating Systems (MCA)

Maximum: 60 Marks

	D.	•	41	• 1 4		•	•	1.	1 \
The	figures	ın	the	right	nand	margin	ın	dicate r	narks)

	(The f	igures in the right hand	margin indicate marks)			
PA	ART - A			$(2 \times 5 =$	= 10 Ma	rks)
Q.1. A	Answer ALL questions				CO#	Blooms Level
a. C	Give the role of "Kernel" an	d "Shell" in UNIX operat	ting system.		CO1	K2
	ist the various file attribute	-	<i>6 j</i>		CO5	K1
c. D	Define inter process commu	nication (IPC).			CO2	K2
d. E	Explain "cat" command in U	Jnix operating system.			CO6	K3
e. V	What are the requirements the	nat a solution to the critical	al section problem must satis	sfy?	CO3	K2
PA	ART – B			(10 x5=	=50 Mai	rks)
Answ	er ALL questions			Marks	CO#	Blooms Level
2. a.	Replacement use the refer	rence string 7, 0,1, 2, 0, 3,	LRU-Approximation Page , 0, 4, 2, 3, 0, 3, 2,1, 2, 0, 1,	5	CO3	K3
b.	7, 0,1 for a memory with Explain the various types		nples.	5	CO1	K1
c.	Write briefly about file at	` '	and structure	5	CO5	K2
d.	An operating system us	ses SJF algorithm for	preemptive scheduling of	5	CO2	K3
	processes. Consider follow	wing set of processes with	h arrival time (AT) & burst			
	time (BT) as given below	. Calculate the average wa	aiting time.			
	Process ID	Arrival Time (AT)	Burst Time(BT)			
	P1	0	12			
	P2	2	4			
	P3	3	6			
2	P4	8	5	_	000	17.0
3.a.	Write in detail about Segr		0. 15	5	CO3	K2
b.	•		vation? Describe resource	5	CO4	K3
	allocation graph with a de					
0	What are files and explain	(OR)	:1 ₀₀ 9	5	CO5	K2
c. d.	What are files and explain "Operating system is res		his statement with suitable	5 5	CO1	K3
u.	functionality of OS.	Surce manager -Justiny ti	ms statement with suitable	3		KS
4.a.	Write briefly about file at	5	CO5	K2		
b.	Discuss the essential prop i) Time sharing systems i		=	5	CO1	К3
c.	Describe the differences scheduling with suitable e	5	CO2	K2		

d. Consider the following system snapshot using data structures in the Banker's 5 CO4 K2 algorithm with resources A,B,C and D and process P0 to P4:

Process	Max	Allocation	<u>Available</u>	<u>Need</u>
	ABCD	ABCD	ABCD	ABCD
P0	6 0 1 2	4 0 0 1	3 2 1 1	
P1	1 7 5 0	1 1 0 0		
P2	2 3 5 6	1 2 5 4		
P3	1 6 5 3	0 6 3 3		
P4	1 6 5 6	0 2 1 2		

Using Banker's algorithm, answer the following questions:

- (i) How many resources of type A, B, C and D are there?
- (ii) Is the system in a safe state?
- 5.a. Write in detail about Deadlock Avoidance.

5 CO4 K2

b. Explain FIFO (First in First out) page replacement algorithm for reference string 7,0,1,2,0,3,0,4,2,3,1,0,3 for a memory with three & four frames.

5 CO3 K3

(OR)

c. Show how wait() and signal() semaphore operations could be implemented in multiprocessor environments.

5 CO3 K3

d. Illustrate how operating system has been evolved from serial processing to multiprogramming systems.

5 CO1

6.a. State critical section problem. Discuss solutions to solve the critical section problem.

CO3 K3

K2

K4

K2

K3

b. Write a shell program to input basic salary (BS). Find the TA=10% of BS, DA=15% of BS, HRA=20% of BS. Find total salary.

5 CO6

5

(OR)

c. State the Operating system structure.

5 CO1

d. Consider the following set of processes with the length of the CPU-burst time in given ms:

5 CO2

Process ID	Arrival Time (AT)	Burst Time(BT)
P1	0	8
P2	1	4
P3	2	9
P4	3	5
P5	4	3

Draw four Gantt charts illustrating the execution of these processes using RR (quantum=2) scheduling. Also calculate waiting time and turnaround time.

--- End of Paper ---