	Reg. No											
--	------------	--	--	--	--	--	--	--	--	--	--	--

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

M.C.A. (First Semester) Regular Examinations, January – 2025 MCA23105 – Discrete Mathematics

(MCA)

Maximum: 60 Marks

(10 x 5 = 50 Marks)

AY 24

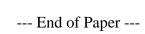
(The figures in the right hand margin indicate marks) PART – A (2 x 5 = 10 Marks)

Q.1. Answer ALL questions			Blooms
0	Write the following statements in symbolic form of 'Mark is poor but happy'.	CO2	Level K1
b.	Define Reflexive relations.	CO1	K1
c.	State Lagrange's theorem of groups	CO1	K1
d.	Define complement of lattice.	CO1	K1
e.	Define isomorphic graph.	CO1	K1

PART – B

<u>Answ</u>	er ALL questions	Marks	CO #	Blooms Level
2. a.	Show that $((P \lor Q) \land \neg (\neg P \land (\neg Q \lor \neg R))) \lor (\neg P \land \neg Q) \lor (\neg P \land \neg R)$ is a	5	CO3	K3
b.	Tautology Find (i) $\sum_{n=10}^{20} n^2$, (ii) $\sum_{n=5}^{25} n^3$	5	CO3	K3
	(OR)			
c.	Draw the truth table for the following formula $(P \rightarrow Q) \rightarrow Q \Rightarrow P \lor Q$.	5	CO3	K3
d.	Prove by method of induction that $4^{n+1} + 5^{2n-1}$ is divisible by 21, for any integer 'n'	5	CO2	K3
3.a.	Find the solution of the recurrence relation $a_n = 6a_{n-1} - 9a_{n-2} + 3^n$.	5	CO3	K3
b.	How many positive integers not exceeding 1000 are divisible by 7 or 11? (OR)	5	CO2	K2
c.	Prove that congruent modulo of 'm' is an equivalence relations.	5	CO3	K2
d.	Let 'S' be a set. Determine greatest and least elements of the poset $(P(S),\subseteq)$ and draw the Hasse diagram.	5	CO3	K3
4.a.	In any Boolean algebra, show that $(a \star b) \oplus (a \star \overline{b}) = b$.	5	CO3	K3
b.	Let $E(x_1, x_2, x_3, x_4) = \overline{(x_1 \star x_2)} \oplus (\overline{x_1} \star x_3)$ be a Boolean expression. Find its disjunctive and conjunctive normal forms. (OR)	5	CO3	K4
c.	In any Boolean algebra, show that $(a \le b) \Rightarrow a \oplus (b \star c) = b \star (a + c)$.	5	CO3	K4
d.	Give an example a lattice which is not distributive.	5	CO3	K2
5.a.	Show that $(Z_6, +_6)$ is a group where $Z_6 = \{0, 1, 2, 3, 4, 5\}$ and $+_6$ is congruent modulo 6.	5	CO3	K3
b.	Explain normal subgroup with a suitable example.	5	CO2	K3
	(OR)			

c.	Define homomorphism of two groups. Let $(S1, *1)$, $(S2, *2)$ and $(S3, *3)$ be groups and $f:S1 \rightarrow S2$ and $g:S2 \rightarrow S3$ be homomorphism's. Prove that the mapping of $g \circ f:S1 \rightarrow S3$ is a group homomorphism.	5	CO3	K4
d.	Verify the set of rational numbers excluding zero is an abelian group under multiplication.	5	CO2	K3
6.a.	Define adjacency matrix. Explain with suitable examples.	5	CO2	K3
b.	Use Kruskal's algorithm to find the minimum cost spanning tree.	5	CO3	K4
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
с.	Define complete Bi-partite graph and draw K3,7.	5	CO2	K3
d.	Find minimum spanning tree by prim's algorithm	5	CO3	K4
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			



) T

) C